변형 탐지·AI 기술 융합해 디지털사진 포렌식
[대전=뉴스핌] 김태진 기자 = 국내 연구진이 위·변조된 사진 및 영상자료를 손쉽게 확인할 수 있는 고성능 소프트웨어를 개발했다.
이 기술은 논문 발표 수준에만 머물러 있던 사진과 영상자료의 위·변조 탐지기술을 국내 최초, 세계에서 두 번째로 실용화 단계로 끌어 올렸다는 점에서 의미가 크다.
KAIST는 전산학부 이흥규 교수 연구팀이 인공신경망을 이용해 디지털 형태의 사진 변형 여부를 광범위하게 탐지하는 실용 소프트웨어 '카이캐치(KAICATCH)'를 개발했다고 3일 밝혔다.
필수변이 공격 별 탐지 결과[사진=KAIST] 2020.11.02 memory4444444@newspim.com |
최근 딥페이크(deepfake)를 포함해 각종 위·변조 영상의 등장과 온라인 유통으로 인한 위·변조 탐지기술에 관한 관심이 급속히 증가하고 있다.
위·변조 여부를 직접 확인할 수 있는 객관적인 분석 도구가 없어 사실확인 작업이나 정황 판단 등에 의존해 진위를 판단함으로써 주관적 판단 여부의 논란 등 문제가 자주 발생하고 있다.
특히 기존의 디지털사진 포렌식 기술은 개개 변형의 유형에 대응해 개발돼서 변형 유형이 다양하거나 사전 특정되기 전에는 일정 수준 이상의 높은 신뢰도를 확보하기 어렵다.
특정 변형에 대해서는 만족할 만한 탐지 성능을 보여주지만 어떤 변형들이 가해진 것인지 전혀 알 수 없는 임의의 디지털사진을 분석해야 하는 실제 상황에서는 판독의 정확성과 신뢰도가 크게 떨어질 수밖에 없다.
다양한 변형이 가해진 채 온라인에서 유통되는 사진이나 영상에 대한 변형 여부의 탐지는 극소수 전문가들의 주관적인 판단의 영역에 머물러 왔기 때문에 이런 문제해결을 위해 많은 도전적 연구들이 진행되고 있다.
이홍규 교수 연구팀은 특정 변형을 탐지하는 개개의 알고리즘들을 모아놓은 기존 기술의 한계를 극복하고 다양한 변형에 대한 탐지를 유기적으로 통합하는 기술에 주목했다.
이를 위해 잘라 붙이기·복사 붙이기·지우기·이미지 내 물체 크기 변화와 이동·리터칭 등 일상적이면서 자주 발생하는 변형들에서 언제나 발생하는 변이들을 분류, 정리해 필수 변이로 정의하고, 이들을 종합 탐지하는 연구를 수행했다.
연구팀은 일반인들을 대상으로 2015년 6월부터 '디지털 이미지 위·변조 식별 웹서비스'로 수집한 30여만장의 실 유통 이미지 데이터와 특징기반·신경망 기반의 포렌식 영상 데이터, 딥페이크와 스테고 분석을 위한 대량의 실험 영상자료를 정밀 분석해 활용했다.
그 결과 변형의 유형을 특정하지 못하는 상태에서도 변형이 발생했는지 여부를 판단함으로써 탐지 신뢰도를 크게 높였다.
연구팀은 이어 BMP·TIF·TIFF·PNG 등 무압축, 무손실 압축을 포함해 50여개의 표준 양자화 테이블과 1000여개가 넘는 비표준화된 양자화 테이블에 기반한 JPEG 이미지들도 포괄적으로 처리하는 기술을 포함한 실용 소프트웨어를 개발하는 데 성공했다.
카이캐치는 전통적인 영상 포렌식 기술, 스테그 분석 기술 등 픽셀 단위의 미세한 변화를 탐지하는 기술들을 응용해 '이상 영역 추정 엔진'과 '이상 유형 분석 엔진' 두 개의 인공지능 엔진으로 구성됐다. 이를 기반으로 결과를 판단하고 사진에 대한 다양한 변형 탐지 기능과 사진의 변형 영역 추정 기능 등을 함께 제공한다.
KAIST 전산학부 이흥규 교수[사진=KAIST] 2020.11.02 memory4444444@newspim.com |
이 교수는 "다양한 변형 시 공통으로 발생하는 픽셀 수준에서의 변형 탐지와 인공지능 기술을 융합한 영상 포렌식 기술을 카이캐치에 담았는데 이 기술은 특히 임의의 환경에서 주어진 디지털사진의 변형 여부를 판단하는데 탁월한 성능을 보인다ˮ고 말했다.
이어 "향후 각종 편집 도구들의 고급 기능들에 대한 광범위한 탐지 기능을 추가하는 한편 현재 확보한 실험실 수준의 딥페이크 탐지 엔진과 일반 비디오 변형 탐지 엔진들도 실용화 수준으로 발전시켜 카이캐치에 탑재하겠다ˮ고 했다.
이번 연구는 KAIST 창업기업인 ㈜디지탈이노텍과 산학협력 연구로 수행됐다.
memory4444444@newspim.com