전체기사 최신뉴스 GAM
KYD 디데이

[김정호의 4차혁명 오딧세이] '변증법적 인공지능' GAN을 아십니까?

기사입력 : 2019년02월04일 13:29

최종수정 : 2019년02월04일 13:29

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

역사 발전과 변증법

우리는 매일 생활 속에서 ‘정반합’(正反合)의 과정을 거치면서 살아간다. 서로 다른 생각, 방법, 이념, 정책, 이론, 습관, 관념들이 출동하는 서로 경우가 많다. 이런 때 서로 양보하면서 타협해 새로운 돌파구를 열어가고 그 과정에서 사회가 발전하고 있다. 이 과정을 ‘변증법적’이라고 표현할 수 있겠다.

김정호 카이스트 교수

여기서 변증법은 정과 반이 충돌하고 결합하면서 다음 선의 방향으로 발전한다는 개념이다. 다른 표현으로 정명제(테제, Thesis)와 반명제(안티테제, Antithesis)를 사용하여 이 모순되는 주장들이 합명제(진테제, Synthesis)를 찾거나 최소한 발전하는 방향으로 질적 변화를 일으킨다는 철학이 변증법이라고 요약할 수 있다. 이러한 변증법이 이루어지는 과정 또는 결과물을 일컬어 ‘정반합’이라고 부르며, 이 정반합이라는 단어는 병증법의 동의어로 쓰이기도 한다.

이러한 변증법은 서양 문명에서 최초로 체계를 갖춰 가면서 발전한 논리적 사고 중의 하나라고 한다. 역사적으로 독일의 철학자 게오르크 빌헬름 프리드리히 헤겔(Georg Wilhelm Friedrich Hegel. 1770~1831)이 변증법을 재발견했다. 헤겔은 이성이 인류를 진보로 이끌며 이러한 이성이 진보를 일궈내는 메커니즘이 바로 변증법이라고 보았다.

이제 4차 산업혁명의 핵심인 ‘인공지능’ 시대가 가까이 다가 오면서 앞으로 인류 역사의 발전이 서양의 대표적인 철학인 변증법을 따를 지, 아니면 완전히 인간의 이성과 분리된 새로운 ‘인공지능’ 이 정하는 방향으로 전개될지 우리에게 새로운 숙제가 탄생했다.

역사 발전 원동력으로 변증법을 주장한 독일 철학자 헤겔. [출처=위키백과]

'변증법 인공지능' GAN

그런데 마침내 변증법적인 알고리즘이 인공지능에도 적용되기 시작했다. GAN(Generative Adversarial Networks)이라고 부르는 최신의 인공지능 알고리즘이다. 그대로 번역하면 ‘적대적인 생성 인공지능 네트워크’ 라고 부를 수도 있겠다. 필자는 이 새로운 인공지능 알고리즘을 ‘변증법적 인공지능'으로 부르려 한다.

이러한 GAN 인공지능에서는 컴퓨터가 최적의 해답을 찾기 위해 ‘진짜(Real Data)’와 ‘가짜(Fake Data)’를 같이 공존해 두고 경쟁시키며 둘 다 발전시킨다. 서로 경쟁하면서 배우는 학습(Learning)과정을 사용한다. 그래서 진짜와 가짜가 끊임없이 경쟁하면서 발전한다. 가짜는 이러한 진짜와의 경쟁을 통한 무수한 학습을 통해서 거의 완전체에 가까워 진다. 그래서 진짜와 가짜를 구별할 수 없는 수준까지 학습을 하고 완성한다. 그러면 인공지능 조차도 진위를 가릴 확률이 50% 가 된다. 진정한 복제품이 완성된다.

이렇게 변증법에서 정과 반이 경쟁하면서 합이라는 새로운 결과물을 만들어 내면서 발전하듯이, 인공지능 내부에서 진짜와 가짜와 정반합으로 발전하여 제 3의 창작물을 만들어 내는 인공지능 알고리즘이 GAN 이다. GAN 내부에는 위조 발생기(Generator Network)가 있고, 진위를 판별하는 판별기(Discriminator Network)가 있다. 이러한 발생기와 판별기는 딥러닝 인공지능 네트워크로 구성된다. 이렇게 진짜와 가짜가 정반합을 이루면서 질적 변화를 추구하는 인공지능 네트워크가 GAN 이다.

이 GAN을 처음 제안한 과학자가 이안 굿펠로우(Ian Goodfellow)이다. 그는 머신 러닝의 연구자로 지금은 구글 브레인에서 연구자로 근무하고 있다. 미 스탠포드 대학에서 학사와 석사를 마치고 박사 학위는 인공지능이 메카인 캐나다 몬트리올 대학에서 받았다. 지도 교수는 인공지능 4대 대가인 요슈아 벤지오 (Yoshua Bengio)교수이다. 그는 GAN을 경찰과 위조 지폐범 사이의 게임에 비유했다. 위조 지폐범(Generator)은 최대한 진짜(Real Data)같은 가짜 화폐(Fake Data)를 만들어 경찰(Discriminator)을 속이기 위해 노력하고, 경찰은 진짜 화폐와 가짜 화폐를 완벽히 판별하여 위조 지폐범을 검거하는 것을 목표로 한다. 이러한 경쟁적인 학습이 지속되다 보면 어느 순간 위조 지폐범은 진짜와 다를 바 없는 위조지폐를 만들 수 있게 된다.

이처럼 변증법적으로 인공지능이 학습하고 진화해 가서 최고의 단계로 진화해 가는 방법이 GAN 알고리즘 인공지능이다.

발생기 네트워크, 구분기 네트워크로 구성된 GAN 인공지능의 원리. [출처=Towards Data Science]

 

GAN 인공지능에 의해서 생성된 창작 예술 그림. [출처=Deep Hunt]

인공지능 창조에 철학적 접근 필요

그런데 GAN 을 이용하면 한편으로 최고의 가짜 복제품을 만들어 낼 수 있다는 역설이 존재한다. 최종으로 궁극적인 정반합의 상태는 진짜와 가짜의 구분 확률이 50%가 되는 지점이다. 그러면 구분이 되지 않는다는 말이다. 이렇게 GAN 을 이용하면 진짜 같은 가짜가 인공지능에 의해서 생성된다. 위조 지폐뿐만 아니라 그림, 디자인, 소설 등 모든 창작품에 진정한 모조품이 등장한다. 피카소의 그림인지 인공지능 모조품인지 구분이 불가능하다. 더 나아가 진짜와 구별이 되지 않는 가짜 뉴스도 얼마든지 생성 가능하다.

이렇게 되면 GAN 은 창작 기계이면서 동시에 모조품 제작 기기가 된다. 양면성을 갖는다. 그런데 인간 역사의 변증법적 진화는 수십 년 수백 년이 걸린다. 그런데 인공지능의 변증법적 진화는 ‘초’ 단위로 진화한다.

이처럼 인공지능도 ‘철학적’이다. 인공지능 알고리즘의 발전에서도 새로운 상상력의 원천이 철학, 역사, 종교, 예술이고 그에 기반해서 새로운 창조가 가능하다. 그 대표적인 변증법적 인공지능 알고리즘인 GAN 이다. 앞으로 한국에서 독창적인 인공지능 알고리즘을 찾고 싶다면 동양 철학을 공부해 보면 좋겠다. 불교, 도교, 유교 등 동양 철학이 다시 보인다. 인공지능 창조에도 인문학이 필요하다.

GAN 인공지능에 의해서 생성된 인공적인 가상 얼굴 사진. [출처=Torch]

 

GAN 인공지능에 의해서 생성된 가상 만화 캐릭터. [출처=Medium]

 

joungho@kaist.ac.kr 


[김정호 카이스트 전기 및 전자공학과 교수

 

 

[뉴스핌 베스트 기사]

사진
메타, AI 데이터센터 구축 270억달러 조달 [서울=뉴스핌] 최원진 기자= 미국 메타플랫폼스(NASDAQ: META)가 루이지애나주 리치랜드 패리시에 건설 중인 초대형 데이터센터 '하이페리온(Hyperion)' 프로젝트를 위해 사모펀드 블루아울캐피털(Blue Owl Capital)과 손잡고 270억달러(약 38조 7000억 원) 규모의 자금 조달 계약을 체결했다고 로이터 통신이 21일(현지시간) 보도했다. 이번 거래는 민간 기업의 단일 자금조달 규모로는 역대 최대 규모다. 메타는 프로젝트의 약 20% 지분을 보유하고, 나머지 대다수 지분은 블루아울이 운용하는 펀드가 보유한다. 블루아울은 약 70억달러 현금을 투입했으며, 메타는 그 대가로 약 30억달러의 일회성 현금 배당을 받았다. 하이페리온 데이터센터는 2기가와트(GW) 이상의 연산 용량을 갖춰 대규모 언어모델(LLM) 학습 등 차세대 인공지능(AI) 연산 인프라를 지원할 예정이다. 메타는 현지에 500명 이상을 고용할 계획이며, 시설 임대계약은 4년 기한에 연장 옵션이 포함된 형태다. 월스트리트저널(WSJ)에 따르면 이번 프로젝트에는 블랙록과 핌코 등 글로벌 자산운용사들이 대규모로 참여했다. 블랙록은 전체적으로 약 30억달러 규모의 채권을 인수했으며, 일부는 액티브 하이일드 ETF 등에 편입됐다. 핌코는 약 180억달러어치를 사들이며 최대 투자자로 참여했다. 업계는 이번 메타의 270억달러 조달을 AI 연산력 확보 경쟁의 신호탄으로 보고 있다. 대형 기술기업들이 전 세계적으로 데이터센터와 전력망 확충에 수백억 달러를 쏟아붓는 가운데, 모건스탠리는 메타·구글·아마존·마이크로소프트 등이 올해만 약 4천억달러를 AI 인프라에 투입할 것으로 내다봤다. 오픈AI 역시 26GW 규모의 연산 능력 확보를 위해 1조달러 이상을 투입할 가능성이 제기된다. 메타의 기업 로고 [사진=블룸버그] wonjc6@newspim.com     2025-10-22 09:32
사진
北, 동북방향으로 단거리 탄도미사일 발사 [서울=뉴스핌] 오동룡 군사방산전문기자 = 북한이 22일 오전 8시10분 경 동북 방향으로 단거리 탄도미사일을 발사했다고 합동참모본부가 밝혔다. 북한의 탄도미사일 도발은 이재명 정부 출범 이후 처음이다. 합참에 따르면, 우리 군은 22일 오전 8시10분경 북한 황북 중화 일대에서 동북 방향으로 발사된 단거리 탄도미사일 수 발을 포착했다. 포착된 북한의 미사일은 약 350km 비행했고, 정확한 제원에 대해서는 한미 정보 당국이 정밀분석 중에 있다고 밝혔다. 북한이 22일 오전 8시10분 경 동북 방향으로 단거리 탄도미사일을 발사했다고 합동참모본부가 밝혔다. 사진은 북한의 단거리 탄도미사일 발사 장면, [사진=조선중앙통신] 2025.10.22 gomsi@newspim.com 합참 관계자는 "한미 정보당국은 북한의 미사일 발사 준비 동향을 사전에 포착해 감시해 왔으며, 발사 즉시 탐지 후 추적하였다"면서 "또한, 미·일 측과 관련 정보를 긴밀하게 공유했다"고 했다. 그러면서 "우리 군은 굳건한 한미 연합방위태세 하에 북한의 다양한 동향에 대해 예의주시하면서, 어떠한 도발에도 압도적으로 대응할 수 있는 능력과 태세를 유지하고 있다"고 밝혔다. 한편, 북한의 단거리 탄도미사일 발사와 관련, 국가안보실은 안보실 및 국방부·합참 관계자 등이 참석한 가운데 '긴급 안보 상황 점검회의'를 개최했다. 국가안보실 관계자는 "북한의 탄도미사일 발사 상황을 실시간으로 파악하고, 관련 상황을 대통령께 보고하면서 상황을 주시해 왔다"면서 "특히 '긴급 안보 상황 점검회의'를 통해 안보실과 국방부 및 군의 대응 상황을 점검하고 한반도 상황에 미칠 영향을 평가했다"고 했다. gomsi@newspim.com 2025-10-22 11:12
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동