전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능의 소통 방법

기사입력 : 2019년07월22일 08:00

최종수정 : 2019년08월06일 19:35

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

김정호 교수.

펀치 카드의 추억

필자가 대학 1학년때 배운 컴퓨터 언어가 ‘포트란’이라는 과학기술용 컴퓨터 언어였다. 이러한 컴퓨터 언어란 인간과 컴퓨터의 소통을 가능하게 해주는 도구이다. 그 포트란은 주로 수학과 과학기술 계산에 편리한 컴퓨터 언어였다. 1980년대인 그때 학교에서 포트란 언어를 읽고 실행하는 컴퓨터가 IBM360/380 시리즈로 기억 한다. 그런데 프로그램을 직접 짜면 ‘펀치카드’라는 두꺼운 종이에 구멍이 뚫리는 방식으로 프로그램이 기록이 된다.

지금 생각해 보면 아주 원시적인 기록이며 컴퓨터 입력 방식이다. 타이프 치듯이 프로그램을 입력하면 이 펀치카드 종이에 구멍이 뚫린다. 이렇게 완성된 이 수 십장, 또는 수 백장의 펀치카드 뭉치를 학교 전산실에 제출하고 그 이후 1-2일 후에 계산 결과를 얻는다. 그때 계산 결과는 종이에 숫자 형식의 데이터로 프린트 되어 나온다. 그러니 1980년대초 컴퓨터의 입력은 종이에 구멍이 뚫린 펀치카드였고, 출력은 프린트 용지였다. 종이가 많이 필요했다. 이때 프린트 용지 맨 바깥쪽에는 프린트 기기에 쉽게 연결이 되게 작은 구멍이 아래 위로 쭉 뚫려 있었다. 이 수 백장의 프린트 용지는 추후 전공 관련 수학 수식을 풀때 요긴하게 쓰인 ‘이면지’였다. 종이가 이면지이자 컴퓨터와의 소통 방식이었다.

그런데 한번 포트란 프로그램에서 실수를 하면 몇 일이 지난 후에야 그 결과를 보고, 다시 고치고 입력해야 한다. 디버깅에 시간이 엄청 많이 걸린다. 그래서 프로그램을 짤 때 실수를 최소화해야 한다. 그때 필자는 학교를 전철을 타고 다녔는데, 전철에 앉아 펀치카드에 입력된 프로그램의 오류를 찾기 위해 몇 번이고 다시 검토하고 읽어 보기도 한 기억이 난다. 이처럼 이러한 초기 컴퓨터의 입출력 방식은 수시로 고치고 편집하거나 다시 실행하기 어려웠다. 그리고 종이의 낭비가 심했다고 볼 수 있다. 요즘 말로 ‘copy’, ‘paste’ 가 불가능하다. USB 에 작게 담거나 인터넷으로 파일을 보낼 수도 없다. 그때는 펀치카드 한 개의 박스로 담아 이동했다. 시간과 비용이 많이 드는 소통방식이다.

그 이후 몇 년이 지나 애플 8비트 컴퓨터가 학과에 한 대가 도입이 되었다. 이제는 펀치카드나 프린트 종이 필요 없이 화면을 보고, 프로그램을 편집하고, 입력하고, 그 계산 결과도 바로 화면으로 보았다. 컴퓨터와의 소통에 종이가 사라지기 시작했다. 편집이나 수정은 한 줄, 한 줄 했다. 요즘처럼 화면 전체를 왔다 갔다 하면서 고친 것이 아니라, 한 줄, 한 줄 고쳤다. 그야말로 줄 편집(line editing)이었다. 이 때 사용한 프로그램으로 ‘베이직’이 기억한다. 이후 IBM XT/AT 개인용 컴퓨터가 등장하면서 컴퓨터가 더욱 대중화 되었다. 워드 프로세서도 등장했다. 이제 펀치카드는 사라졌다. 이처럼 컴퓨터가 발전하면서 입력, 출력 장치도, 다르게 말하면 소통 방식도 인간에게 더 편리하게 발전해 왔다. 따라서 인공지능 컴퓨터의 입출력 형태와 소통 방식도, 또 다시 진화할 것으로 기대한다.

인공지능의 입력과 출력

현재 가장 많이 사용되고 있는 대표적인 인공지능 알고리즘이 CNN(Convolution Neural Network)이다. 주로 사진 이미지나 동영상을 판독하고, 이해하는데 사용하는 알고리즘이다. 특히 인터넷과 유튜브에 널린 수많은 사진과 영상 자료가 CNN 학습 데이터가 된다. 이때 컴퓨터가 자동적으로 인터넷에서 읽어서 긁어 모은다. 펀치카드도 필요가 없고 자판기도 필요가 없다. CNN은 이들 사진들을 입력하고, 출력으로는 예를 들어 그 사진 속의 물체를 인식(Classification)하거나 사진(Image) 속의 장면으로 글(Caption)로 쓰거나, 이야기(Text)를 만들 수도 있다. 또는 사진 속의 인물이 다음에 할 행동을 예측(Prediction)하거나 추후 일어날 사건을 예측한다. 또는 화면 속의 상황을 이해(Explain)할 수 있다. 이렇게 CNN의 출력은 ‘Tag(이름), ‘설명문(Caption)’, ‘문학 작품(Text)’이 되기도 한다. 때로는 음성 단어나 스토리로 만들어 출력할 수도 있다. 그리고 더 나아가 그 내용에 맞게 영상도 제작 가능하고, 음악도 창작 가능하고, 그림도 창작 가능하다. 출력으로 창작물을 만들 때 GAN(Generative Adversary Network) 알고리즘이 CNN과 같이 결합될 수 있다. 이 경우 출력은 창작 그림, 시, 문학작품, 음악, 영화도 된다.

입력 ‘사진’을 보고, ‘새’라고 확률(출력)을 제시(Classification)해 주는 CNN의 내부 구조. [출처=KAIST]

인공지능에서 CNN 다음으로 많이 사용하는 알고리즘이 RNN(Recurrent Neural Network)이다. 주로 시간 차이를 두고 순차적으로 입력되는 데이터의 해석과 이를 기초한 미래 예측에 사용된다. 대표적으로 사용하는 말을 알아듣는 인공지능 알고리즘이다. 말은 문법에 따라 순서대로 들어 온다. 그래서 입력의 순서에 따라 의미와 해석이 달라진다. 이 때문에 인공지능이 컴퓨터 내부에서 순차적으로 데이터를 받아 들이고, 순차적으로 학습하고 판단하도록 설계되어 있다. 다른 말로 시간과 순서 개념이 있는 인공지능이다. 그래서 RNN의 입력은 문장 혹은 사람의 말이 된다. 또는 영화의 장면과 장면의 연속이 입력이 될 수 있다.

책 한 권 전체가 RNN의 입력이 될 수도 있다. 그 속에 단어가 순서대로 나열되어 있게 때문이다. 더 나아가 인류가 유사이래 만든 모든 문서, 모든 책이 RNN 의 입력이 될 수 있다. 여기에 전세계 수 백 개 언어의 책과 문서, 녹음 파일 전체가 입력 데이터가 되는 엄청난 분량이 된다. 인공지능 컴퓨터가 책을 모두 쉽고 빠르게 읽는 입력 장치만 개발되면 된다.

전화 상담하면 녹음이 되고, 디지털화되면 그 파일이 바로 RNN의 입력이 된다. 지하철 속에서 주고 받는 대화 모두가 누군가 기록한다면 RNN 입력이 된다. 스마트폰으로 주고 받는 문자와 통화내용도 입력이 된다. 집에 설치된 아마존 인공지능 스피커도 ‘알렉사’도 RNN 입력이 된다. 그래서 CNN의 영상 이미지 이상으로 많은 RNN 입력 데이터가 지구상에 존재한다.

이러한 RNN의 출력은 ‘정답’, ‘독후감’, 설명문’ 또는 ‘다음 문장’이 된다. 입력 데이터를 읽고 이해하고, 그 전체를 요약하거나 문맥을 설명하는 것이 출력도 된다. 또는 그에 해당하는 사진이나 영상을 출력할 수도 있다. 또는 입력 문장에 맞게 음악, 그림, 소설, 영화 등을 창작할 수 있다. 이때는 RNN 과 GAN이 결합해야 한다. 이처럼 RNN의 입력은 문자이나, 녹음, 영상, 책이 되고 출력은 단어, 해설, 또는 창작물이 된다. 이것이 RNN의 소통방식이다.

순서대로 들어오는 입력 문장을 통해 출력으로 해석하거나 단어로 표현하는 RNN 구조. [출처=KAIST]

궁극적인 인공지능의 입출력

결국 인공지능이 사람같이 생각하고, 행동하고 교류하려면 입출력 방식이 인간을 닮은 모습이 아닌가 한다. 결국 인공지능 소통 방식이 인간과 같아야 한다. 그렇게 되면, 인공지능의 입력은 사람처럼 말을 알아 듣고, 눈으로 볼 수 있어야 한다. 그리고 인공지능의 출력은 말을 하거나 글을 쓰거나, 단어로 표현하거나 한 단계 더 나아가, 문장, 소설, 시, 그림, 음악, 영화와 같은 창작물이 될 수 있다. 더 똑똑한 인공지능은 말을 하지 않아도, 문맥이나 표정만 보고 알아서 판단하고 행동을 하면 더 좋다. 궁극적으로 말 끼를 알아듣고, 눈치가 빠른 인공지능이 되어야 한다. 그 때 인공지능은 IQ 뿐만 아니라 EQ 도 좋아 사회성과 도덕성을 가지면 더욱 바람직하다.

미래 자율주행자동차에서는 이런 인공지능의 입출력 방법이 인간과 인공지능 컴퓨터와의 소통과 대화의 방식이 된다. 자율주행자동차의 기능에서 인공지능 자체의 기능도 중요하지만, 인간과의 소통을 위한 입출력 기능도 그에 못지 않게 같이 중요하다. 그래야 완전한 자율주행자동차 시대가 된다. 결국 인공지능이 발전하면서 인공지능의 소통 기술도 함께 발전되어야 한다. 궁극적으로는 소통의 방식은 ‘인간의 모습’을 닮아 간다. 언제인가 인공지능의 소통 방식으로 ‘텔리파시’까지 사용될 수도 있다.

 

[김정호 카이스트 전기 및 전자공학과 교수] joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
광복군, 일본군 무장해제 "항복사실 모르느냐? 변상문의 '화랑담배'는 6·25전쟁 이야기이다. 6·25전쟁 때 희생된 모든 분에게 감사드리고, 그 위대한 희생을 기리기 위해 제목을 '화랑담배'로 정했다. 우리는 그들에게 전의(戰意)가 없는 것을 보이기 위해 기관단총을 모두 어깨에 걸쳤다. 그러고도 만일을 위해서 각각 산개하면서 뛰어내리기 시작했다. 드디어 내 차례가 왔다. 몸을 날렸다. 아. 그때 그 바람 냄새, 그 공기의 열기, 아른대는 포플러의 아지랑이, 그리고는 아무것도 순간적이었지만 보이지 아니했다. 그러나 어쩐 일인가? 우리 주변엔 돌격 태세에 착검한 일본군이 포위하고 있었다. 워커 구두 밑의 여의도 모래가 발을 구르게 했다. 코끼리 콧대 같은 고무관을 제독총에 연결한 험상궂은 방독면을 뒤집어쓴 일본군이 차차 비행기를 중심으로 원거리 포위망을 좁혀오고 있었다. 너무나도 위험한 상황이었다. 이것이 그리던 조국 땅을 밟고 처음 맞은 분위기였다. 동지들은 눈빛을 무섭게 빛내면서 사주경계를 했다. 그러나 아직 기관단총을 거머쥐지는 아니했다. 여의도의 공기가 움직이지 않는 고체처럼 조여들어 왔다. 뿐만 아니었다. 타고 온 C46형 수송기로부터 한 50여m 떨어진 곳의 격납고 앞에는 실히 1개 중대나 되는 군인들이 일본도를 뽑아 든 한 장교에게 인솔되어 정렬해 있었다. 그 앞에는 고급장교인 듯한 자들이 한 줄 또 섰고, 장군 몇 명도 있는 듯했다. 그러나 무엇보다도 8월 18일 한낮의 그 뜨거운 여의도 열기가 우리를 더욱 긴장시켰다. 격납고 뒤에까지 무장한 군인이 대기하고 있었다. 중형전차의 기관포도 이쪽을 향하고 있었다. 환호하는 광복군. [사진= 국사편찬위원회] 비행장 아스팔트 위엔 한여름의 복사열이 그 위기의 긴장처럼 이글대고 있었다. 어느새 우리는 땀에 젖어 있었다. 기막힌 침묵이 십여 분이나 지났다. 그러나 그들은 어떤 행동도 취해 오지 않았다. 마침내 우리가 발걸음을 옮겼다. 우리는 일본군 고급 장교들이 늘어선 쪽으로 한걸음 씩 움직였다. 각자 산개, 조심하라! 누군가가 이렇게 나직하게 말했다. 서해 연안으로 비행기가 고도를 낮출 때 누군가가 유서를 쓰던 일이 이 순간 내 머릿속에서 상기되었다. 일본군 병사들은 우리가 다가서자 의외로 포위망을 풀 듯이 비켜섰다. 우리는 아직 기관단총을 어깨에 멘 그대로였다. 일본군이 길을 열어주자, 그들도 일본군 육군 중장을 선두로 한 장교단이 우리 쪽으로 오기 시작했다. 그가 바로 조선주차군사령관 죠오쯔끼(上月良夫)였다. 쬬오쯔기는 그의 참모장 이하라 소장과 나남 사단장과 참모들을 뒤로 거느렸다. 우리도 좌우로 벌려 섰다. 쬬오쯔기가 「나니시니 이라시따노?(무슨 일로 왔소?)」말문을 열었다. 퍽 야무지게 보였다. 우리는 말 대신 영등포 상공에서 뿌리다 남긴 선전 전단을 내밀어 주었다. 우리의 임무가 일본어와 우리말로 적힌 전단이었다. 거긴 또 우리가 이렇게 들어오게 된 사연도 적혀있었다. 우리는 한 장씩 그 전단을 다른 일본군 장교들에게 나누어 주었다. 쬬오쯔끼는 이를 받아 읽고, "일본은 정전만 한 상태이니 일단 돌아갔다가 휴전 조약이 체결된 다음에 재입국하라"라고 말했다. 그러면서 은근히 위협했다. 자기네 병사들이 꽤 흥분되어 있으니, 만약 돌아가지 않으면 그 신변 보호에 안전책임을 지기가 어렵다는 분위기라고 했다. 이에 이범석 장군이 "네 놈들의 천황이 이미 연합국에 무조건 항복한 사실을 모르느냐? 이제부터는 동경의 지시가 필요 없다는 것을 알아야 한다"라고 맞섰다. 그러나 쉽사리 양보하지 않았다. 옥신각신 말이 몇 번 건너 왔다 갔다. 갑자기 쬬오쯔끼는 한 일본군 대령에게 일을 처리하라고 지시했다. 그러면서 그는 동경서 손님이 오기로 되어 있어 마중을 나와 있던 참이란 말을 하고는 물러가 버렸다" 이범석 장군은 일본군 측에 "조선 총독을 만나 담판 짓겠다'라고 요구했으나 거절당했다. 일본군 무장해제 임무를 띠고 국내로 들어 온 '광복군 국내정진군'은 아무런 소득도 올리지 못한 채 다음 날 8월 19일 14:30분 여의도 기지를 이륙하여 중국으로 돌아갔다. 광복군은 미군정이 시작되고 나서 한참이나 지난 다음에 개인 자격으로 귀국할 수밖에 없었다. 조짐이 좋지 않았다. / 변상문 국방국악문화진흥회 이사장   2025-09-29 08:00
사진
손흥민 7·8호-부앙가 23호...환상 '흥부 듀오' [서울=뉴스핌] 박상욱 기자 = 손흥민이 시즌 7·8호골을 연달아 터뜨리며 4경기 연속골을 기록했다. 드니 부앙가도 시즌 23호골을 넣어 '흥부 듀오'는 3골을 합작하며 팀 승리에 결정적인 역할을 했다. LAFC 손흥민은 28일(한국시간) 미국 미주리주 세인트루이스의 에너자이저 파크에서 열린 2025 MLS 정규리그 서부 콘퍼런스 세인트루이스 시티SC와의 원정 경기에서 3-4-3 포메이션의 원톱 스트라이커로 선발 출전했다. LAFC는 '흥부 듀오'의 활약을 앞세워 3-0으로 완승을 거뒀다. LAFC는 승점 53을 기록하며 서부 콘퍼런스 4위 자리를 유지했다. [세인트루이스 로이터=뉴스핌] 박상욱 기자= 손흥민이 28일(한국시간) MLS 34라운드 세인트루이스 시티 SC와의 원정 경기에서 자신의 첫 번째 골을 넣고 '찰칵 세리머니'를 하고 있다. 2025.9.28 psoq1337@newspim.com [세인트루이스 로이터=뉴스핌] 박상욱 기자= 손흥민이 28일(한국시간) MLS 34라운드 세인트루이스와의 원정 경기에서 자신의 첫 번째 골을 넣고 골 셀레브레이션을 하고 있다. 2025.9.28 psoq1337@newspim.com 손흥민은 1-0으로 앞선 전반 추가시간 시즌 7호골을 뽑아냈다. 그는 중원에서 단독 드리블로 페널티박스 왼쪽까지 돌파한 뒤 오른발 슈팅으로 골망을 흔들며 선제골을 기록했다. 후반 15분에는 페널티박스 정면에서 수비수를 앞에 두고 오른발 슈팅으로 시즌 8호골을 추가, 이날 멀티골을 완성했다. 손흥민은 이번 시즌 MLS에서 8경기 만에 8골 3도움을 기록하며, 출전 경기마다 존재감을 과시하고 있다. MLS 기록 기준으로 이번 4경기 연속골은 지난 2021년 12월 토트넘 소속으로 EPL 14라운드부터 4경기 연속골을 기록한 이후 약 3년 9개월 만이다. 경기를 중계하던 현지 해설진은 "손흥민과 부앙가는 피할 수 없다(inevitable)"며 두 선수의 뜨거운 활약을 추켜세웠다. [세인트루이스 로이터=뉴스핌] 박상욱 기자= 손흥민이 28일(한국시간) MLS 34라운드 세인트루이스와의 원정 경기에서 자신의 두 번째 골을 넣고 골 셀레브레이션을 하고 있다. 2025.9.28 psoq1337@newspim.com [세인트루이스 로이터=뉴스핌] 박상욱 기자= 손흥민이 28일(한국시간) MLS 34라운드 세인트루이스 시티 SC와의 원정 경기에서 골을 넣고 부앙가과 손을 마주치고 있다. 2025.9.28 psoq1337@newspim.com 손흥민과 함께 공격을 이끄는 드니 부앙가(31)도 전반 15분 선제골을 터뜨리며 5경기 연속골로 시즌 23골을 기록, 리오넬 메시에 이어 득점 랭킹 2위에 올랏다. 두 선수는 최근 LAFC가 터트린 15골 중 절반 이상을 책임지고 있다. 경기 도중 손흥민과 부앙가는 높이 뛰어올라 하이파이브를 주고받는 세리머니를 펼치며 팀 분위기를 끌어올렸다. 세인트루이스에서는 정상빈이 왼쪽 날개 공격수로 선발 출전하며 '코리안 더비'가 성사됐다. 정상빈은 전반 2분 수비 뒷공간으로 빠르게 침투하다 LAFC 골키퍼와 충돌하며 경고를 받았지만 경기 내내 활발한 움직임을 보였다. 그는 후반 20분 공격포인트 없이 교체돼 벤치로 돌아갔다. 이날 승리로 LAFC의 스티브 체룬돌로 감독은 2022년 1월 지휘봉을 잡고 나서 통산 100승(36무 9패)째를 달성하는 기쁨을 맛봤다. psoq1337@newspim.com 2025-09-28 11:52
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동