전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능은 타임머신을 탈 수 있다

기사입력 : 2019년03월18일 08:00

최종수정 : 2019년03월18일 08:00

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

마이클 제이 폭스와 타임 머신

필자가 미국 유학을 시작한 해가 서울올림픽이 열리던 1988년이다. 그때 학교에서 퇴근하면 가족과 함께 저녁식사를 먹으면서 즐겨 보던 텔레비전 드라마가 ‘패밀리 타이즈(Family Ties)’라는 미국 시트콤이다.

    김정호 교수

화목한 가정을 중심으로 가족간에 펼쳐지는 재미있고, 즐거운 이야기이다. 지금 그 드라마를 유튜브로 다시 봐도 재미있다.

특히 그 드라마에서 남자 배우로 마이클 제이 폭스(Michael J. Fox)가 개구장이 남동생으로 나오고, 그의 마음씨 좋은 누나로 배우 저스틴 베이트맨(Justine Tanya Bateman)이 나온다.

맬러리로 나오는 저스틴은 성격 좋은 누나로 남동생 마이클의 장난을 항상 모두 받아주곤 했다.

그 배역들이 모두 호감이 가는 성격들이었다. 마이클 제이 폭스는 나중에 그 드라마에 나오는 다른 여배우와 결혼하게 된다.

1982년부터 1989년까지 미국 NBC에서 방송된 시트콤 ‘패밀리 타이즈(Family Ties)’ 의 출연진. 맨 왼쪽이 배우 ‘마이클 제이 폭스’이고 그 다음이 배우 ‘저스틴 베이트맨’이다. [출처= Biography.com]

그 마이클 제이 폭스를 다시 만난 것은 영화 ‘백 투 더 퓨처(Back to The Future)’ 에서다. 이 영화는 ‘타임 머신’을 타고 과거로 돌아가서 일어나는 이야기를 다루고 있다. 영화 '백 투 더 퓨처'는 1985년부터 시작된 영화로 로버트 저메키스 감독, 스티븐 스필버그 제작, 마이클 제이 폭스 주연의 전설적인 SF 3부작 영화이면서 코미디, 드라마, 액션 요소도 모두 들어가 있다.

시간여행과 그에 따른 타임 패러독스를 다룬 영화이다. 1980년대를 상징하는 고전 어드벤쳐 작품이다. 특히 이 영화의 주된 타임머신 기체인 ‘드로리안’은 영화 사상 가장 유명한 타임머신이다. 그 다재 다능하고 유쾌한 배우 마이클 제이 폭스가 현재 파킨슨 병으로 수십 년간 고생하고 있다. 파킨슨 병이 아니라면 아마 더 많은 시트콤과 드라마, 그리고 영화를 찍을 수 있었을 것으로 생각한다. 

이 영화에서 타임머신 기계인 ‘드로리안’이 등장한다. 물리학에서 입장에서 본다면 영화처럼 타임머신을 타고 과거로 돌아가기 위해서는 빛의 속도로 과거의 정보로 거슬러 올라가야 한다. 그러려면 본인이 타고 있는 타임머신이 빛의 속도 이상으로 달려서 과거의 시대로 돌아가야 한다. 과거의 정보는 과거의 빛에 실려 있기 때문이다. 그래서 타임머신은 빛보다 빨리 날아가야 한다. 그러려면 무한대의 에너지가 필요하고 아인쉬타인의 상대성 이론에 위배된다.

이처럼 타임머신을 타고 과거의 데이터를 수집하고 그를 바탕으로 인공지능을 학습할 수 있다면 지금의 세계는 더 개선된 모습을 보일 지 않을까 상상해 본다. 그런데 이렇게 과거로 돌아가는 타임머신이 인공지능 안에도 있다.

1985년부터 발표된 3 부작 어드벤쳐 영화 ‘백투더 퓨처’의 포스터 사진, [출처=Academy Center of the Arts]

인공지능도 과거로 돌아간다

인공지능 구현 방법 중에서 기계나 컴퓨터가 학습을 통해서 스스로 지능을 만들어 가는 방식을 머신러닝(Machine Learning)이라고 한다. 이 머신러닝의 대표적 알고리즘이 딥러닝(Deep Learning) 혹은 딥뉴럴네트워크(DNN, Deep Neural Network)이다.

이 딥러닝의 학습 방법은 입력 데이터를 이용해 학습하는 지도학습(Supervised Learning)과 입력 데이터 없이 스스로 학습하는 비지도 학습(Unsupervised Learning)으로 나뉘어 진다. 바로 이 지도학습에서 중요한 것은 입력데이터를 주고 출력을 비교하여 정답을 알도록 끊임 없이 알려 주어야 한다. 이 과정을 학습(Learning)이라고 하고 딥러닝 인공지능의 핵심 과정이 된다. 그래서 학습 없는 인공지능은 없다.

딥러닝 인공지능 알고리즘에서 입력 데이터를 주고 여러 층의 신경망을 따라 쭉 신호를 전파하면서 최종 출력을 만들어 가는 과정을 순방향 전파(Forward Propagation)이라고 한다. 그리고 이렇게 만들어진 출력이 지도학습을 위한 미리 준비한 정답과 다를 때, 신경망 내의 가중치를 개선해 나아가야 한다.

거꾸로 지능을 개선하는 작업이다. 그러기 위해서는 출력 오차를 확인하고, 그 결과에 따라 역 방향으로 가중치를 고쳐 나아가야 한다. 이처럼 가중치를 꺼꾸로 고치면서 반대방향으로 교정해 가는 과정을 역전파(Back Propagation)이라고 한다. 따라서 역전파 학습 없는 머신러닝 인공지능은 없다.

딥러닝 알고리즘 속의 역전파(Back Propagation) 학습의 개념, [출처=KAIST]

그러니 역사의 진행 결과를 보고 잘못된 것을 깨닫고, 역사를 거슬러 역사를 고쳐가는 과정이 인공지능에서 바로 역전파 학습이다. 그래서 잘못을 깨닫고 과거로 돌아가 자신을 바꾸는 과정이 바로 딥러닝 알고리즘의 핵심 학습과정이다. 시대를 거꾸로 가는 셈이다.

인간 세계에는 물리적으로 불가능하지만 컴퓨터 알고리즘에서는 가능하다. 그래서 컴퓨터 알고리즘은 위대하고 혁신적이다. 다르게 보면 역전파 학습은 타임머신을 타고 과거로 돌아가는 작업과 같다. 그래서 인공지능도 타임머신을 탄다고 얘기해도 되겠다.

마이클 제이 폭스는 영화 백투더 퓨쳐에서 ‘드로리안’ 타임머신을 타고 과거로 돌아 갔다. 딥러닝 인공지능에서는 출력과 정답차이의 오차, 활성화 함수의 미분 기울기, 그리고 기존의 가중치를 타고 과거로 돌아간다. 특히 활성화 함수의 미분이 과거로 돌아가는 속도를 결정한다. 인공지능에서는 이처럼 순방향 학습과 역방향 학습을 수만 번, 수천만 번 빅데이터 만큼 시행한다. 학습량을 늘리고 지능의 정확성을 높이기 위해서는 데이터가 더 많이 필요하다. 그래서 모든 사물과 사람을 연결해서 데이터를 모은다. 그걸 보통 ‘사물인터넷’이라 부른다.

딥러닝 알고리즘 속의 역전파(Back Propagation) 학습에 필요한 비용함수와 그 학습화 과정을 보여주는 강의노트, [출처=KAIST]

인공지능도 과거 역사에서 배운다

가끔 역사 책을 읽거나, 텔레비전 역사 프로그램을 보거나, 유튜브를 보면서 역사 공부를 다시금 하게 되는 기회가 종종 있다. 점점 유튜브로 역사 공부하는 시간이 길어진다. 그럴 때 마다 역사 공부가 참 재미있고 흥미진진하다. 사건의 역사적 배경과 인물, 결과의 의미를 다시 살펴보게 된다.

최근에는 3.1 운동 의미를 다시 알게 되었다. 3.1 운동의 의미가 우리나라가 ‘대한제국’에서 ‘대한민국’으로 전환하는 큰 계기라는 사실을 처음으로 알게 되었다. 그러고 보면 중고등학교 때 역사 공부는 참으로 재미없게 했다. 수동적으로 받아 적고 외우고 시험 보는 공부가 아니라 스스로 찾고, 발표하고, 토론하는 수업이었다면 훨씬 재미있고 기억에 많이 남았을 것 같은 아쉬움이 남는다. 그러는 과정에서 책도 더 많이 읽을 수 있었을 것이다. 역사는 그 자체가 재미있고, 배울 점이 많다.

인공지능이 똑똑한 것은 데이터로부터 스스로 학습하기 때문이다. 특히 오류가 발생했을 때 과거로 되돌아가 지난 과거를 고친다. 그리고 다시 출발한다. 인간 사회와 다른 점이라 볼 수 있다. 인공지능이 인간보다 똑똑한 이유이기도 하다. 미래에는 인공지능도 우리처럼 역사의 재미를 알게 될까 궁금하다.

대표적인 역사 기록물인 조선왕조실록은 역사 기록의 빅데이터이다. [출처=tistory]

 

joungho@kaist.ac.kr  

  

[김정호 카이스트 전기 및 전자공학과 교수]

 

 

[뉴스핌 베스트 기사]

사진
광복군, 일본군 무장해제 "항복사실 모르느냐? 변상문의 '화랑담배'는 6·25전쟁 이야기이다. 6·25전쟁 때 희생된 모든 분에게 감사드리고, 그 위대한 희생을 기리기 위해 제목을 '화랑담배'로 정했다. 우리는 그들에게 전의(戰意)가 없는 것을 보이기 위해 기관단총을 모두 어깨에 걸쳤다. 그러고도 만일을 위해서 각각 산개하면서 뛰어내리기 시작했다. 드디어 내 차례가 왔다. 몸을 날렸다. 아. 그때 그 바람 냄새, 그 공기의 열기, 아른대는 포플러의 아지랑이, 그리고는 아무것도 순간적이었지만 보이지 아니했다. 그러나 어쩐 일인가? 우리 주변엔 돌격 태세에 착검한 일본군이 포위하고 있었다. 워커 구두 밑의 여의도 모래가 발을 구르게 했다. 코끼리 콧대 같은 고무관을 제독총에 연결한 험상궂은 방독면을 뒤집어쓴 일본군이 차차 비행기를 중심으로 원거리 포위망을 좁혀오고 있었다. 너무나도 위험한 상황이었다. 이것이 그리던 조국 땅을 밟고 처음 맞은 분위기였다. 동지들은 눈빛을 무섭게 빛내면서 사주경계를 했다. 그러나 아직 기관단총을 거머쥐지는 아니했다. 여의도의 공기가 움직이지 않는 고체처럼 조여들어 왔다. 뿐만 아니었다. 타고 온 C46형 수송기로부터 한 50여m 떨어진 곳의 격납고 앞에는 실히 1개 중대나 되는 군인들이 일본도를 뽑아 든 한 장교에게 인솔되어 정렬해 있었다. 그 앞에는 고급장교인 듯한 자들이 한 줄 또 섰고, 장군 몇 명도 있는 듯했다. 그러나 무엇보다도 8월 18일 한낮의 그 뜨거운 여의도 열기가 우리를 더욱 긴장시켰다. 격납고 뒤에까지 무장한 군인이 대기하고 있었다. 중형전차의 기관포도 이쪽을 향하고 있었다. 환호하는 광복군. [사진= 국사편찬위원회] 비행장 아스팔트 위엔 한여름의 복사열이 그 위기의 긴장처럼 이글대고 있었다. 어느새 우리는 땀에 젖어 있었다. 기막힌 침묵이 십여 분이나 지났다. 그러나 그들은 어떤 행동도 취해 오지 않았다. 마침내 우리가 발걸음을 옮겼다. 우리는 일본군 고급 장교들이 늘어선 쪽으로 한걸음 씩 움직였다. 각자 산개, 조심하라! 누군가가 이렇게 나직하게 말했다. 서해 연안으로 비행기가 고도를 낮출 때 누군가가 유서를 쓰던 일이 이 순간 내 머릿속에서 상기되었다. 일본군 병사들은 우리가 다가서자 의외로 포위망을 풀 듯이 비켜섰다. 우리는 아직 기관단총을 어깨에 멘 그대로였다. 일본군이 길을 열어주자, 그들도 일본군 육군 중장을 선두로 한 장교단이 우리 쪽으로 오기 시작했다. 그가 바로 조선주차군사령관 죠오쯔끼(上月良夫)였다. 쬬오쯔기는 그의 참모장 이하라 소장과 나남 사단장과 참모들을 뒤로 거느렸다. 우리도 좌우로 벌려 섰다. 쬬오쯔기가 「나니시니 이라시따노?(무슨 일로 왔소?)」말문을 열었다. 퍽 야무지게 보였다. 우리는 말 대신 영등포 상공에서 뿌리다 남긴 선전 전단을 내밀어 주었다. 우리의 임무가 일본어와 우리말로 적힌 전단이었다. 거긴 또 우리가 이렇게 들어오게 된 사연도 적혀있었다. 우리는 한 장씩 그 전단을 다른 일본군 장교들에게 나누어 주었다. 쬬오쯔끼는 이를 받아 읽고, "일본은 정전만 한 상태이니 일단 돌아갔다가 휴전 조약이 체결된 다음에 재입국하라"라고 말했다. 그러면서 은근히 위협했다. 자기네 병사들이 꽤 흥분되어 있으니, 만약 돌아가지 않으면 그 신변 보호에 안전책임을 지기가 어렵다는 분위기라고 했다. 이에 이범석 장군이 "네 놈들의 천황이 이미 연합국에 무조건 항복한 사실을 모르느냐? 이제부터는 동경의 지시가 필요 없다는 것을 알아야 한다"라고 맞섰다. 그러나 쉽사리 양보하지 않았다. 옥신각신 말이 몇 번 건너 왔다 갔다. 갑자기 쬬오쯔끼는 한 일본군 대령에게 일을 처리하라고 지시했다. 그러면서 그는 동경서 손님이 오기로 되어 있어 마중을 나와 있던 참이란 말을 하고는 물러가 버렸다" 이범석 장군은 일본군 측에 "조선 총독을 만나 담판 짓겠다'라고 요구했으나 거절당했다. 일본군 무장해제 임무를 띠고 국내로 들어 온 '광복군 국내정진군'은 아무런 소득도 올리지 못한 채 다음 날 8월 19일 14:30분 여의도 기지를 이륙하여 중국으로 돌아갔다. 광복군은 미군정이 시작되고 나서 한참이나 지난 다음에 개인 자격으로 귀국할 수밖에 없었다. 조짐이 좋지 않았다. / 변상문 국방국악문화진흥회 이사장   2025-09-29 08:00
사진
중국 전기차 주행거리 두배 증가 배터리 개발 [베이징=뉴스핌] 조용성 특파원 = 중국이 에너지 밀도를 두 배 증가시킬 수 있는 전고체 배터리를 개발해 낸 것으로 나타났다. 중국 칭화(淸華)대학 화학공학과의 연구팀은 '음이온이 풍부한 용매화 구조 설계'를 개발해 냈으며, 이를 기반으로 불소 함유 폴리에테르 전해질을 성공적으로 만들어냈다고 중국 관찰자망이 30일 전했다. 해당 연구 성과는 논문 형식으로 국제 학술지인 네이처에 등재되었다. 연구진이 만들어낸 폴리에테르 전해질은 고체이며, 연구팀은 해당 전해질을 사용하여 전고체 배터리를 제작했다. 제작된 전고체 배터리는 604Wh/kg의 에너지 밀도를 기록했다. 이는 현재 리튬 이온 배터리의 에너지 밀도가 150~320Wh/kg인 점을 감안하면 에너지 밀도가 두 배 이상 높아진 것이다. 동일한 무게의 배터리이지만 해당 전해질을 사용한 전고체 배터리는 두 배 이상의 전력을 충전할 수 있는 셈이다. 이론적으로 전기차의 1회 충전 주행 거리가 두 배 증가할 수 있게 된다. 현재 500km가량을 주행할 수 있는 전기차가 1000km를 주행할 수 있게 된다. 해당 전고체 배터리는 안전성 테스트도 통과하였다. 못을 박아도 화재와 폭발이 일어나지 않았다. 또한 120도의 높은 온도의 박스 안에 6시간 동안 방치되었지만, 연소나 폭발이 일어나지 않았다. 또한 500회 이상 충방전을 거치면서도 에너지 저장 용량은 안정적으로 유지되었다. 연구진이 만들어낸 전고체 배터리가 상용화된다면 많은 분야에서 활용이 가능해진다. 전기차의 주행 거리는 두 배 증가하며, 드론의 비행 거리도 두 배 증가하게 된다. ESS(에너지저장장치) 역시 부피당 저장 용량을 크게 끌어올리게 되며 ESS 소형화가 가능해진다. 칭화대 연구진이 개발한 전고체 전해질의 도식도 [사진=네이처 캡처] ys1744@newspim.com 2025-09-30 10:35
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동