전체기사 최신뉴스 GAM 라씨로
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능은 타임머신을 탈 수 있다

기사입력 : 2019년03월18일 08:00

최종수정 : 2019년03월18일 08:00

마이클 제이 폭스와 타임 머신

필자가 미국 유학을 시작한 해가 서울올림픽이 열리던 1988년이다. 그때 학교에서 퇴근하면 가족과 함께 저녁식사를 먹으면서 즐겨 보던 텔레비전 드라마가 ‘패밀리 타이즈(Family Ties)’라는 미국 시트콤이다.

    김정호 교수

화목한 가정을 중심으로 가족간에 펼쳐지는 재미있고, 즐거운 이야기이다. 지금 그 드라마를 유튜브로 다시 봐도 재미있다.

특히 그 드라마에서 남자 배우로 마이클 제이 폭스(Michael J. Fox)가 개구장이 남동생으로 나오고, 그의 마음씨 좋은 누나로 배우 저스틴 베이트맨(Justine Tanya Bateman)이 나온다.

맬러리로 나오는 저스틴은 성격 좋은 누나로 남동생 마이클의 장난을 항상 모두 받아주곤 했다.

그 배역들이 모두 호감이 가는 성격들이었다. 마이클 제이 폭스는 나중에 그 드라마에 나오는 다른 여배우와 결혼하게 된다.

1982년부터 1989년까지 미국 NBC에서 방송된 시트콤 ‘패밀리 타이즈(Family Ties)’ 의 출연진. 맨 왼쪽이 배우 ‘마이클 제이 폭스’이고 그 다음이 배우 ‘저스틴 베이트맨’이다. [출처= Biography.com]

그 마이클 제이 폭스를 다시 만난 것은 영화 ‘백 투 더 퓨처(Back to The Future)’ 에서다. 이 영화는 ‘타임 머신’을 타고 과거로 돌아가서 일어나는 이야기를 다루고 있다. 영화 '백 투 더 퓨처'는 1985년부터 시작된 영화로 로버트 저메키스 감독, 스티븐 스필버그 제작, 마이클 제이 폭스 주연의 전설적인 SF 3부작 영화이면서 코미디, 드라마, 액션 요소도 모두 들어가 있다.

시간여행과 그에 따른 타임 패러독스를 다룬 영화이다. 1980년대를 상징하는 고전 어드벤쳐 작품이다. 특히 이 영화의 주된 타임머신 기체인 ‘드로리안’은 영화 사상 가장 유명한 타임머신이다. 그 다재 다능하고 유쾌한 배우 마이클 제이 폭스가 현재 파킨슨 병으로 수십 년간 고생하고 있다. 파킨슨 병이 아니라면 아마 더 많은 시트콤과 드라마, 그리고 영화를 찍을 수 있었을 것으로 생각한다. 

이 영화에서 타임머신 기계인 ‘드로리안’이 등장한다. 물리학에서 입장에서 본다면 영화처럼 타임머신을 타고 과거로 돌아가기 위해서는 빛의 속도로 과거의 정보로 거슬러 올라가야 한다. 그러려면 본인이 타고 있는 타임머신이 빛의 속도 이상으로 달려서 과거의 시대로 돌아가야 한다. 과거의 정보는 과거의 빛에 실려 있기 때문이다. 그래서 타임머신은 빛보다 빨리 날아가야 한다. 그러려면 무한대의 에너지가 필요하고 아인쉬타인의 상대성 이론에 위배된다.

이처럼 타임머신을 타고 과거의 데이터를 수집하고 그를 바탕으로 인공지능을 학습할 수 있다면 지금의 세계는 더 개선된 모습을 보일 지 않을까 상상해 본다. 그런데 이렇게 과거로 돌아가는 타임머신이 인공지능 안에도 있다.

1985년부터 발표된 3 부작 어드벤쳐 영화 ‘백투더 퓨처’의 포스터 사진, [출처=Academy Center of the Arts]

인공지능도 과거로 돌아간다

인공지능 구현 방법 중에서 기계나 컴퓨터가 학습을 통해서 스스로 지능을 만들어 가는 방식을 머신러닝(Machine Learning)이라고 한다. 이 머신러닝의 대표적 알고리즘이 딥러닝(Deep Learning) 혹은 딥뉴럴네트워크(DNN, Deep Neural Network)이다.

이 딥러닝의 학습 방법은 입력 데이터를 이용해 학습하는 지도학습(Supervised Learning)과 입력 데이터 없이 스스로 학습하는 비지도 학습(Unsupervised Learning)으로 나뉘어 진다. 바로 이 지도학습에서 중요한 것은 입력데이터를 주고 출력을 비교하여 정답을 알도록 끊임 없이 알려 주어야 한다. 이 과정을 학습(Learning)이라고 하고 딥러닝 인공지능의 핵심 과정이 된다. 그래서 학습 없는 인공지능은 없다.

딥러닝 인공지능 알고리즘에서 입력 데이터를 주고 여러 층의 신경망을 따라 쭉 신호를 전파하면서 최종 출력을 만들어 가는 과정을 순방향 전파(Forward Propagation)이라고 한다. 그리고 이렇게 만들어진 출력이 지도학습을 위한 미리 준비한 정답과 다를 때, 신경망 내의 가중치를 개선해 나아가야 한다.

거꾸로 지능을 개선하는 작업이다. 그러기 위해서는 출력 오차를 확인하고, 그 결과에 따라 역 방향으로 가중치를 고쳐 나아가야 한다. 이처럼 가중치를 꺼꾸로 고치면서 반대방향으로 교정해 가는 과정을 역전파(Back Propagation)이라고 한다. 따라서 역전파 학습 없는 머신러닝 인공지능은 없다.

딥러닝 알고리즘 속의 역전파(Back Propagation) 학습의 개념, [출처=KAIST]

그러니 역사의 진행 결과를 보고 잘못된 것을 깨닫고, 역사를 거슬러 역사를 고쳐가는 과정이 인공지능에서 바로 역전파 학습이다. 그래서 잘못을 깨닫고 과거로 돌아가 자신을 바꾸는 과정이 바로 딥러닝 알고리즘의 핵심 학습과정이다. 시대를 거꾸로 가는 셈이다.

인간 세계에는 물리적으로 불가능하지만 컴퓨터 알고리즘에서는 가능하다. 그래서 컴퓨터 알고리즘은 위대하고 혁신적이다. 다르게 보면 역전파 학습은 타임머신을 타고 과거로 돌아가는 작업과 같다. 그래서 인공지능도 타임머신을 탄다고 얘기해도 되겠다.

마이클 제이 폭스는 영화 백투더 퓨쳐에서 ‘드로리안’ 타임머신을 타고 과거로 돌아 갔다. 딥러닝 인공지능에서는 출력과 정답차이의 오차, 활성화 함수의 미분 기울기, 그리고 기존의 가중치를 타고 과거로 돌아간다. 특히 활성화 함수의 미분이 과거로 돌아가는 속도를 결정한다. 인공지능에서는 이처럼 순방향 학습과 역방향 학습을 수만 번, 수천만 번 빅데이터 만큼 시행한다. 학습량을 늘리고 지능의 정확성을 높이기 위해서는 데이터가 더 많이 필요하다. 그래서 모든 사물과 사람을 연결해서 데이터를 모은다. 그걸 보통 ‘사물인터넷’이라 부른다.

딥러닝 알고리즘 속의 역전파(Back Propagation) 학습에 필요한 비용함수와 그 학습화 과정을 보여주는 강의노트, [출처=KAIST]

인공지능도 과거 역사에서 배운다

가끔 역사 책을 읽거나, 텔레비전 역사 프로그램을 보거나, 유튜브를 보면서 역사 공부를 다시금 하게 되는 기회가 종종 있다. 점점 유튜브로 역사 공부하는 시간이 길어진다. 그럴 때 마다 역사 공부가 참 재미있고 흥미진진하다. 사건의 역사적 배경과 인물, 결과의 의미를 다시 살펴보게 된다.

최근에는 3.1 운동 의미를 다시 알게 되었다. 3.1 운동의 의미가 우리나라가 ‘대한제국’에서 ‘대한민국’으로 전환하는 큰 계기라는 사실을 처음으로 알게 되었다. 그러고 보면 중고등학교 때 역사 공부는 참으로 재미없게 했다. 수동적으로 받아 적고 외우고 시험 보는 공부가 아니라 스스로 찾고, 발표하고, 토론하는 수업이었다면 훨씬 재미있고 기억에 많이 남았을 것 같은 아쉬움이 남는다. 그러는 과정에서 책도 더 많이 읽을 수 있었을 것이다. 역사는 그 자체가 재미있고, 배울 점이 많다.

인공지능이 똑똑한 것은 데이터로부터 스스로 학습하기 때문이다. 특히 오류가 발생했을 때 과거로 되돌아가 지난 과거를 고친다. 그리고 다시 출발한다. 인간 사회와 다른 점이라 볼 수 있다. 인공지능이 인간보다 똑똑한 이유이기도 하다. 미래에는 인공지능도 우리처럼 역사의 재미를 알게 될까 궁금하다.

대표적인 역사 기록물인 조선왕조실록은 역사 기록의 빅데이터이다. [출처=tistory]

 

joungho@kaist.ac.kr  

  

[김정호 카이스트 전기 및 전자공학과 교수]

 

 

CES 2025 참관단 모집

[뉴스핌 베스트 기사]

사진
모델 문가비 아들 친부는 정우성 [서울=뉴스핌] 양진영 기자 = 모델 문가비(35)가 출산한 아들의 친부가 배우 정우성(51)인 것으로 드러났다. 정우성 소속사 아티스트컴퍼니는 24일 "문가비가 소셜미디어를 통해 공개한 아이는 정우성의 친자가 맞다"며 "아이의 양육 방식에 대해서 최선의 방향으로 논의 중이다. 아버지로서 아이에 대해 끝까지 책임을 다할 것"이라고 밝혔다. 다만 "출산 시점과 두 사람의 교제 여부, 결혼 계획 등 사생활 관련 내용은 확인해 줄 수 없다"고 알렸다. 배우 정우성 [사진=에이스메이커무비웍스] 앞서 두 사람 사이의 득남 소식이 알려졌다. 두 사람은 2022년 한 모임에서의 만남 가까이 지냈으나 교제한 사이는 아니었고 결혼 계획도 없는 것으로 전해졌다. 작년 6월 문가비가 임신 사실을 알렸고 정우성은 양육의 책임을 약속했다고 한다. 문가비는 뷰티 예능 프로그램 '겟잇뷰티' 등으로 얼굴을 알린 한동안 활동을 중단했다가 지난 22일 인스타그램을 통해 아들 출산 사실을 고백했다. 그러나 결혼 여부나 아이 아버지에 관한 언급은 없어 궁금증을 샀다. 당시 문가비는 "너무 갑작스럽게 찾아온 소식에 아무 준비가 돼 있지 않았던 저는 임신의 기쁨이나 축하를 마음껏 누리기보다는 가족들의 축복 속에 조용히 임신 기간 대부분을 보냈다"며 "그렇게 하기로 선택한 건 오로지 태어날 아이를 위함이었다. 마음 한편에 늘 소중한 무언가를 지키기 위해서는 꽁꽁 숨겨야 한다고 생각했다"고 했다. [사진=문가비 인스타그램] 이어 "세상에 나온 아이를 앞에 두고 여전히 완벽한 준비가 되지 않은 엄마지만 그런 내 부족함과는 상관없이 존재 자체만으로 나의 마음을 사랑으로 채워주는 아이를 보며, 완벽함보다는 사랑과 행복으로 가득 찬 건강한 엄마가 돼야겠다고 다짐했다"며 "그러기 위해서는 용기를 내야 한다고 생각했다"고 말했다. 문가비는 1989년생으로 2017년 온스타일 예능 '매력티비'와 '겟잇뷰티'로 얼굴을 알렸다. 이후 SBS '정글의 법칙'과 KBS '볼빨간 당신' 등 각종 예능에 출연했다. 여러 광고와 헤라서울패션위크 등 패션쇼 무대에도 섰다. jyyang@newspim.com 2024-11-25 09:48
사진
이재명 '위증교사' 1심 김동현 판사 누구 [서울=뉴스핌] 배정원 기자 = 이재명 더불어민주당 대표의 위증교사 혐의 1심 선고를 맡은 서울중앙지법 형사합의33부 재판장에 대한 관심이 집중되고 있다. 서울중앙지법 형사합의33부(김동현 부장판사)는 25일 오후 2시 위증교사 혐의로 기소된 이 대표의 1심 선고공판을 진행한다.  전라남도 장성 출신의 김동현 부장판사는 고려대학교 법학과를 졸업하고 2001년 사법연수원을 30기로 수료했다. 김 부장판사는 2004년 광주지법 판사를 시작으로 인천지법, 서울동부지법, 서울고법 등을 거쳐 지난해부터 선거·부패 사건을 전담하는 서울중앙지법 형사합의33부 부장판사로 재직하고 있다. [서울=뉴스핌] 이형석 기자 = 이재명 더불어민주당 대표가 25일 오전 서울 여의도 국회에서 열린 최고위원회의에 자리하고 있다. 2024.11.25 leehs@newspim.com 김 부장판사는 이 대표의 위증교사 사건 외에도 '대장동·위례신도시·성남FC·백현동 의혹' 사건을 함께 심리하고 있는데, 해당 사건은 기록의 양이 방대하고 쟁점이 복잡해 1심 선고를 하기까지 몇 년이 더 걸릴 수 있다는 전망이 나온다. 당초 이 대표 측은 두 사건을 분리해서 진행할 경우 방어권 보장에 어려움을 겪게 된다며 병합 심리를 요구했으나, 김 부장판사는 두 사건을 병합하지 않고 별도로 진행하기로 결정했다. 또 김 부장판사는 이른바 '가짜 수산업자'에게 금품을 받은 혐의로 기소된 박영수 전 특별검사(특검)의 1심 사건을 맡으며 징역 4개월에 집행유예 1년을 선고하기도 했다. 당시 김 부장판사는 "이 사건 범행으로 공직자의 공정한 직무수행과 공공기관에 대한 국민의 신뢰가 크게 훼손됐다"며 "특히 박영수 피고인은 국정농단 규명을 위해 임명된 특별검사로 어느 공직자보다 공정성과 청렴성에서 모범을 보여야함에도 금품을 수수했다"고 질책했다. 박 전 특검 등에게 금품을 제공한 혐의로 기소된 가짜 수산업자 김모 씨에 대해서는 "다수의 공직자에게 긴 시간 금품을 제공한 점, 이종범죄로 처벌받은 전력이 있는 점 등을 고려했다"며 징역 6개월의 실형을 선고했다. 또 김 부장판사는 이명박 정부 시절 이른바 '스파르타팀'을 꾸려 정부에 우호적인 방향으로 온라인 여론을 조작한 혐의 등으로 기소된 전직 청와대 비서관들에게도 징역형 집행유예를 선고한 바 있다.  이런 가운데, 위증교사 혐의는 이 대표의 형사 사건 중 가장 불리한 판결이 나올 가능성이 높은 사건으로 꼽히고 있다. 검찰에 따르면 최근 6년간 유죄가 확정된 위증교사 사범 195명 중 실형(69명)이나 징역형 집행유예(114명)가 선고된 사례는 94.8%에 이르며 벌금형(12명) 선고 비율은 6.2%에 그쳤다. 이 대표가 만약 위증교사 혐의로 대법원에서 금고 이상의 형(집행유예 포함)을 확정받으면 공직선거법 제19조에 따라 피선거권이 박탈돼 형이 실효될 때까지 선거에 출마할 수 없게 된다.  jeongwon1026@newspim.com 2024-11-25 11:19
안다쇼핑
Top으로 이동