전체기사 최신뉴스 GAM
KYD 디데이
마켓

속보

더보기

[김정호의 4차혁명 오딧세이] 영화보며 눈물 흘리는 인공지능(AI) 멀지 않았다

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

인공지능(AI)도 신경세포 겹겹이 쌓이면 쌍둥이도 구별 가능
음성 인식, 스토리 인식 기능이 더해지면 영화 감상 가능해져

'파블로프의 개' 실험, 그리고 딥러닝

인공지능 시대의 도래를 가능케 만든 알고리즘이 딥러닝(Deep Learning)이다. 딥러닝 알고리즘은 신경세포의 동작과 신호 전달 과정을 소프트웨어로 구현하는 방법이다. 우리 뇌는 신경세포(뉴런)들과 그것들을 연결하는 시냅스(연접체)들로 구성돼 있다. 

딥러닝 알고리즘에선 신경 세포를 연결하는 시냅스를 통해 신호가 전달될 때 신호 전달 가중치를 둔다. 그리고 이 여러 개의 신호가 한 개의 신경세포에서 만나서 더해지는데, 이때 더한 값이 어느 임계함수 값을 넘으면 다음 신경세포로 그 신호가 전달된다.

이처럼 딥러닝 알고리즘에선 수 많은 가중치와 임계함수가 학습을 통해 정해진다. 바로 이 가중치와 임계함수 값의 결정을 한 학습에는 데이터가 필요한데, 기존에 데이터 센터에 저장된 빅데이터를 이용하는 방법이 있고, 인공지능 스스로 데이터를 만들어 컴퓨터 스스로 자가 학습하는 '강화 학습 방법'이 있다. 그런데 바로 이 자가 학습은 인간의 도움이 필요 없기 때문에 더 무섭기도 하다.

딥러닝 알고리즘을 쉽게 개념적으로 설명하는 방법으로 러시아 생리학자 이반 페트로비치 파블로프가 실시한 '파블로프의 개' 실험을 예로 들기도 한다. '바블로프의 개' 실험은 반사 신경 작동에 대해서 연구한 내용으로 교과서에도 나올 정도로 유명하다. 이 실험에서는 음식을 직접 눈 앞에 보여 주거나 종소리를 들려 주면서 학습을 하게 된다. 눈으로 보는 음식, 귀로 들리는 종소리가 학습용 데이터가 된다.

눈으로도 보고 또는 종도 치면 그 합이 어느 임계함수 값을 넘으면 바로 개가 침을 흘리게 된다는 것인데 이것을 알고리즘으로 표현한 것이 딥 러닝이다. 그런데 이 가중치 값과 임계함수 값은 수많은 파블로프의 개 실험을 통해 학습으로 얻은 데이터로 정해진다.

'파블로프의 개' 실험을 이용한 딥러닝 프로세스. 출처 : KAIST.

딥러닝은 깊은 추상화 과정

이처럼 딥러닝 알고리즘을 '파블로프의 개' 실험으로 설명하면 아주 단순하고 명료한 이해에 도움을 준다.

그런데 딥러닝 알고리즘에는 신경세포 층(Layer)으로 표현되는 추상화 단계가 있다. 이렇게 신경세포 층으로 표현되는 층수가 늘어날수록 판단의 정확도가 높아진다. 그 층 수가 200개를 넘기도 한다. 그래서 딥(Deep) 러닝이라고 한다. 층수가 늘어가면서 추상화의 깊이가 늘어난다. 입력이 영상 이미지라고 하면, 추상화를 진행하면서 처음에는 얼굴을 윤곽을 인식하게 되고, 그 다음에 코, 눈, 귀를 파악해 가고, 그 다음에 남녀를 파악하고, 나이도 파악하고, 궁극적으로 얼굴의 주인을 파악해 간다.

그러면 고양이와 호랑이도 구분할 수 있게 된다. 더 나아가 쌍둥이도 구별하고, 같은 사람이라도 젊었을 때의 모습, 나이든 모습도 구별하고 동일 인물임을 파악할 수 있다. 마지막에 100만 명 중의 또는 10억 중의 한 사람을 구분하게 된다. 여기에 음성 인식과 스토리 인식 기능, 감정 기능이 합쳐지면 영화도 보고 눈물을 흘릴 날이 멀지 않았다. 모두 딥러닝 알고리즘과 학습을 통해서 구현 가능하다.

딥 러닝을 이용한 영상 이미지 추상화 과정, 출처: KAIST.

딥러닝, 인간의 '인지 기능의 비밀' 열어 젖힐 것

기존의 뇌 과학은 뇌 현상의 이해를 수학이나 논리 작업으로 파악하려고 했다. 그에 기반하여 알고리즘을 세우고 소프트웨어로 구현해서 인간지능을 재현하려 했다. 하지만 어느 이상 발전하는데 한계를 만났다.

그런데 딥러닝의 내부 동작은 블랙박스다. 여기서는 뇌 내부의 동작 원리를 알려고 하지 않는다. 아무리 빅데이터로 학습해서 가중치와 임계함수를 정해가더라도 그것들은 단순히 숫자의 나열일 뿐이지 논리도 없고 의미도 없다. 알려고도 하려고도 않는다. 빅데이터를 기반으로 학습해서 변수와 함수 값을 채워나갈 뿐이다. 그 이후 충분한 학습 후에 딥러닝 알고리즘이 제공하는 판단과 예측 결과만 믿을뿐이다.

이렇게 모든 것을 기존의 연구 방법론을 포기하고, 비우고, 새 출발하기 때문에 인공지능이 이제 신의 영역에 도달할 수 있는 새로운 기회를 잡았는지도 모른다. 과학의 한계를 인정하고, 빅데이터를 기반한 학습을 믿고, 컴퓨터의 능력을 믿기 때문이다. 완전히 새로운 출발이다.

블랙박스의 개념도. 출처 : 구글.

 

[김정호 카이스트 전기 및 전자공학과 교수]

김정호 교수

 

[뉴스핌 베스트 기사]

사진
내년 의대 490명 더 뽑는다 [서울=뉴스핌] 황혜영 기자 = 2027학년도 의과대학 모집 정원이 3548명으로 늘면서 전년보다 490명이 증원된다. 이에 따라 의대 합격선 하락과 재수 이상 'N수생' 증가, 상위권 자연계 입시 재편 등 입시 지형 변화가 불가피할 것으로 보인다. 10일 열린 보건복지부의 보건의료정책심의위원회(보정심)에 따르면 2027학년도 의대 정원이 현행 3058명에서 490명 늘린 3548명으로 확정됐다. 2028·2029학년도에는 613명, 2030·2031학년도에는 813명씩 증원하기로 했다. [서울=뉴스핌] 정일구 기자 = 정부가 2027∼2031학년도 의과대학 정원을 오늘 확정한다. 보건복지부는 10일 오후 보건의료정책심의위원회(보정심) 제7차 회의를 열고 의대 정원 규모를 논의한 뒤 브리핑을 진행해 2027∼2031학년도 의사인력 양성 규모와 교육현장 지원 방안을 발표할 예정이다. 사진은 이날 서울시내 의과대학 모습. 2026.02.10 mironj19@newspim.com 2027학년도 증원분 490명은 비서울권 32개 의대를 중심으로 모두 지역의사제 전형으로 선발되며 해당 지역 중·고교 이력 등을 갖춘 학생만 지원할 수 있는 구조다. 입시업계는 이번 정원 확대가 '지역의사제' 도입과 맞물려 여러 학년에 걸쳐 입시 전반을 흔들 것으로 보고 있다. 이번 증원은 현 고3부터 중학교 2학년까지 향후 5개 학년에 영향을 미칠 것으로 분석된다. 특히 의대 정원 확대에 따른 합격선 하락이 예상된다. 종로학원 분석에 따르면 2025학년도 의대 정원 확대로 합격선 컷이 약 0.3등급 낮아졌으며, 이번 증원도 최소 0.1등급가량 하락을 불러올 것으로 보인다. 당시 지역권 대학의 경우 내신 4.7등급대까지 합격선이 내려오기도 했다. 합격선 하락은 상위권 학생들의 '반수'와 'N수생' 증가로 이어질 가능성이 크다. 임성호 종로학원 대표는 "의대 문턱이 낮아질 것이란 기대가 생기면 최상위권은 물론 중위권대 학생까지도 재도전에 나설 가능성이 커진다"고 전망했다. 특히 2027학년도 입시가 현행 9등급제 내신·수능 체제의 마지막 해라는 점에서 이미 내신이 확정된 상위권 재학생들이 반수에 나설 가능성도 제기된다. 지역의사제 도입은 중·고교 진학 선택에도 적지 않은 영향을 미칠 것으로 보인다. 지역전형 대상 지역의 고교에 진학해야 지원 자격이 주어지기 때문에 서울·경인권 중학생 사이에서는 지방 또는 경기도 내 해당 지역 고교 진학을 고려하는 움직임이 예상된다. 또 일반 의대와 지역의사제 전형 간 합격선 차이도 발생할 것으로 관측된다. 지원 단계부터 일반 의대를 우선 선호하는 경향이 강해 동일 학생이 두 전형에 합격하더라도 일반 의대를 택할 가능성이 높아 지역의사제 전형의 합격선은 다소 낮게 형성되고 중도 탈락률도 상승할 수 있다는 전망이 나온다. 전형 구조 측면에서도 변화가 예상된다. 김병진 이투스교육평가연구소 소장은 "490명 증원 인원 전체가 일반 지원자에게 해당되지는 않으며 지역인재전형과 일반전형으로 나눠 보면 실제 전국 지원자에게 영향을 주는 증원 규모는 약 200명 수준일 것"이라고 분석했다. 또 "최근 3년간 입시에서 모집 인원 변동에 가장 민감하게 반응한 전형은 수시 교과전형, 특히 지역인재전형이었다"며 "이번 증원에서도 교과 중심 지역인재전형의 모집 인원 증가 폭이 전체 입시 흐름을 결정할 것"이라고 전망했다.  hyeng0@newspim.com 2026-02-10 19:32
사진
알파벳 '100년물' 채권에 뭉칫돈 [뉴욕=뉴스핌] 김민정 특파원 = 인공지능(AI) 투자를 위한 실탄 확보에 나선 구글의 모기업 알파벳이 발행한 '100년 만기' 채권이 시장에서 뜨거운 반응을 얻었다. 100년 뒤에나 원금을 돌려받는 초장기 채권임에도 불구하고, 알파벳의 재무 건전성과 AI 패권에 대한 투자자들의 신뢰가 확인됐다는 평가다. 10일(현지시간) 블룸버그통신은 소식통을 인용해 알파벳이 영국 파운드화로 발행한 8억5000만 파운드(약 1조6900억 원) 규모의 100년 만기 채권에 무려 57억5000만 파운드의 매수 주문이 몰렸다고 보도했다. 이날 알파벳은 3년물부터 100년물까지 총 5개 트랜치(만기 구조)로 채권을 발행했는데, 그중 100년물이 가장 큰 인기를 끌었다. 알파벳은 올해 자본지출(CAPEX) 규모를 1850억 달러로 잡고 AI 지배력 강화를 위한 공격적인 행보를 이어가고 있다. 이를 위해 전날 미국 시장에서도 200억 달러 규모의 회사채 발행을 성공적으로 마쳤다. 강력한 수요 덕분에 발행 금리는 당초 예상보다 낮게 책정됐다. 또한 스위스 프랑 채권 시장에서도 3년에서 25년 만기 사이의 5개 트랜치 발행을 계획하며 전방위적인 자금 조달에 나섰다. 100년 만기 채권은 국가나 기업의 신용도가 극도로 높지 않으면 발행하기 어려운 '희귀 아이템'이다. 기술 기업 중에서는 닷컴버블 당시 IBM과 1997년 모토롤라가 발행한 사례가 있으며, 그 외에는 코카콜라, 월트디즈니, 노퍽서던 등 전통적인 우량 기업들이 발행한 바 있다. 기술 기업이 100년물을 발행한 것은 모토롤라 이후 약 30년 만이다. 미국 캘리포니아주 마운틴뷰의 구글.[사진=로이터 뉴스핌] 2026.02.11 mj72284@newspim.com ◆ "알파벳엔 '신의 한 수', 투자자에겐 '미묘한 문제'" 전문가들은 이번 초장기채 발행이 알파벳 입장에서는 매우 합리적인 전략이라고 입을 모은다. 얼렌 캐피털 매니지먼트의 브루노 슈넬러 매니징 파트너는 "이번 채권 발행은 알파벳 입장에서 영리한 부채 관리"라며 "현재 금리 수준이 합리적이고 인플레이션이 장기 목표치 근처에서 유지된다면 알파벳과 같은 기업에 초장기 조달은 매우 타당한 선택"이라고 평가했다. 그러면서 "알파벳의 견고한 재무제표와 현금 창출 능력, 시장 접근성을 고려할 때 100년 만기 채권을 신뢰성 있게 발행할 수 있는 기업은 전 세계에 몇 안 된다"고 강조했다. 하지만 투자자 입장에서는 신중해야 한다는 지적도 나온다. 초장기채는 금리 변화에 따른 가격 변동성(듀레이션 리스크)이 매우 크기 때문이다. HSBC은행의 이송진 유럽·미국 크레딧 전략가는 "AI 산업 자체는 100년 뒤에도 존재하겠지만, 생태계가 5년 뒤에 어떤 모습일지조차 예측하기 어렵다"며 "기업 간 상대적인 서열은 언제든 뒤바뀔 수 있다"고 꼬집었다. 실제로 금리 상승기에는 초장기채의 가격이 급락할 위험이 있다. 지난 2020년 오스트리아가 표면금리 0.85%로 발행한 100년 만기 국채는 이후 금리가 오르면서 현재 액면가의 30%도 안 되는 가격에 거래되고 있다. 이를 두고 슈넬러 파트너 역시 "투자자 입장에서 이 채권의 매력은 훨씬 미묘하고 복잡한 문제"라고 했다. mj72284@newspim.com 2026-02-11 01:35
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동