전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 반도체 메모리도 휴식 필요한 이유

기사입력 : 2019년05월07일 08:00

최종수정 : 2019년05월16일 06:09

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

반도체 메모리 디램, 전원 끄면 데이터 사라진다

4차 산업혁명 시대를 맞아 데이터의 중요성이 그 어느 때 보다 높다. 특히 데이터는 인공지능 학습에 필요하다. 그래서 데이터가 힘의 원친이 된다. 그런데 인공지능 프로세서가 데이터로 학습하거나 판단할 때, 꼭 메모리로부터 데이터를 받아 와야 한다. 그리고 계산 후에 다시 저장해야 한다.

      김정호 교수

여기에서 시간이 걸리고 전력이 많이 소모된다. 그래서 빠르게 읽고 저장할 수 있는 빨리 반응하는 반도체 메모리의 수요가 증가하고 있다. 반도체 메모리 중에 빠른 동작 속도를 나타내면서 아울러 가장 많은 수요를 차지하는 반도체 메모리가 바로 디램(DRAM, Dynamic Random-Access Memory)이다. 저장 밀도도 높고 나노 초 (10억분의 1초) 단위의 동작 속도를 보인다. 디램은 데이터를 유지하려면 지속적인 전기 공급이 필요하기 때문에 DRAM은 휘발성 기억 장치(Volatile Memory)에 속한다. 현재 삼성전자와 SK 하이닉스가 세계 디램 시장의 1, 2 위를 차지하고 있다.

디램은 가장 간단한 구조를 가지면서 경제성이 높은 반도체 메모리 기억장치이다. 디램에는 한 개의 트랜지스터(Transistor)와 한 개의 캐패시터(Capacitor)로 이루어져 있다. 이 다른 말로 축전기라고 부르는 이 캐패시터에 전자를 저장한다. 전자가 충분히 저장된 상태이면 디지털로 ‘1’ 이고 전자가 비어 있으면 디지털로 ‘0’ 인 상태가 된다. 그래서 디램 제작 공정 시에 최대한 작은 면적에 디램 셀(Cell)을 만들려고 좁은 면적에 3차원 구조의 캐패시터를 만든다. 거의 나노 미터(10억 분의 1 미터)급 크기에 100층 짜리 고층 빌딩을 건축하는 공사와 비슷하다.

그리고 이 캐패시터에 전자를 담았다 다시 꺼내기 위한 스위치 동작을 하는 것이 트랜지스터이다. 1개의 셀 트랜지스터와 1개의 스위치가 1 비트를 저장하는 장치가 된다. 그리고 이를 연결하기 위한 데이터용 비트라인(Bit Line), 주소를 알리기 위한 워드라인(Word Line)의 금속이 디램 내부에 격자로 배치된다. 그리고 이러한 셀들이 2차원으로 격자를 이루고, 그 주위로 센서회로, 쓰기 회로, 읽기 회로, 주소 생성 회로 등이 배치된다.

다만 디램의 단점은 전기를 끄면 데이터가 사라진다는 사실이다. 그래서 영원히 데이터를 기록하기는 불가능하다. 그래서 장기간 저장하기 위해서는 데이터를 지워지지 않은 낸드 플래쉬(NAND Flash) 메모리로 이동해야 한다. 그래서 컴퓨팅 서버에는 디램이 주로 사용되고, 데이터 센터에는 낸드플래쉬 메모리가 주로 사용된다.

반도체 메모리의 대표적 기술인 디램과 낸드플래쉬 메모리의 구조, [출처=네이버 블로그]
컴퓨터 프로세서 주변에 설치되는 SK Hynix 디램의 단면 전자현미경 사진, [출처=maltiel]

 

디램도 휴식이 필요해


그런데 디램에도 태생적인 문제가 있다. 캐패시터에 저장된 전자가 새어 나가는 전자 누설(Leakage) 문제이다. 오래 시간이 지나면 디지털 ‘1’ 로 저장된 전자가 거의 다 새어나가 디지털 ‘0’으로 변한다. 저장된 데이터 값이 변화하는 것이다. 특히 반도체 메모리의 소자의 온도가 올라가면, 전자의 활동 열 에너지가 높아져서, 전자가 셀에서 빠져나가 누설될 확률이 더욱 커진다. 또한 공정이 발달하여 캐패시터 유전체의 두께가 점점 얇아 진다. 그러면 더욱 전자가 유전체를 뚫고 나가 누설될 확률이 점점 더 높아진다.

이러한 디램의 근본적인 문제를 극복하려고 일정한 시간이 지나면 디램 셀에 가두어준 전자를 읽고 다시 데이터를 쓴다. 다시 말해서 새어 나간 전자를 다시 채우는 작업이다. 이러한 디램 동작을 ‘리프레쉬(Refresh)’라고 부른다. 이 리프레쉬 시간 동안 디램은 휴식을 취하고, 그 대신 데이터를 읽고 쓰기 동작을 하지 못한다. 프로세서와 데이터의 교환도 없다. 일종의 메모리의 ‘휴식’ 기간이 된다.

컴퓨터 시스템을 사용하는 모든 장치에서 디램은 저장장치로서 가장 많이 쓰이고 있다. 디램을 사용하는 동안 데이터를 계속 저장시켜 놓기 위해서는 지속적인 리프레쉬(Refresh)가 필요하다. 그러므로, 사용하지 않을 때에도 리프레쉬를 위해서 전력을 계속 소모하게 된다. 따라서 이 리프레쉬 동작이 반복적으로 지속되면 전력 소모는 증가하지만, 컴퓨팅 계산효율은 매우 떨어지게 된다. 이 리프레쉬 동작으로 디램의 데이터는 다시 복원되지만, 일은 잠시 멈추게 된다. 이처럼 어쩔 수 없이 디램도 휴식이 필요하다.

이렇게 전자가 누설되는 문제를 줄이는 또 다른 방법이 반도체를 냉각시키는 방법이 있다. 디램을 냉각하면 전자의 운동성이 느려져 디램 셀에서 전자가 새어 나갈 가능성이 줄어든다. 그래서 인공지능 서버나 데이터센터 서버 전체를 물속에 넣는 방법이 있을 수 있다. 그러면 온도가 0 도로 유지할 수 있다. 더욱 적극적인 방법은 컴퓨터를 아예 액체 질소에 넣고 냉각하는 방법이다. 디램을 포함하는 컴퓨터와 반도체 전체를 '액화질소(Liquified Nitrogen)’로 냉각하는 방법이다.

대부분의 질소가 기체 상태이며 자연상의 액체질소는 존재하지 않기 때문에 항상 기체 질소를 액화해서 제작하며, 액체 질소의 온도는 영하 - 196°C(77K) 이다. 매우 차가운 물질 가운데는 그나마 공기 중에서 근처에서 쉽게 구할 수 있다. 더 차가운 액체헬륨은 -269°C(4K)이다. 거의 전자의 열 운동 에너지가 정지한 상태이다. 그러면 이 온도에서 디램의 리프레쉬를 아주 드물게 하여, 컴퓨터 성능과 효율을 획기적으로 높일 수 있다. 그래서 미래의 인공지능 컴퓨터와 저장장치는 액체 질소 냉각통 안에 설치될 수도 있다.

영하 -196도 액체인 액체 질소와 그 기화 증기 사진, [출처= Thoughtco]

 

◆ 인간도 휴식 필요하다 

우리도 날씨나 일로 인해서 열을 받고 더우면 에어컨을 켠다. 찬 물에 샤워를 하기도 한다. 그래서 보통 휴가는 시원한 날씨와, 바다가 있는 휴양지로 간다. 경험에 따르면 유가지로 하와이 와이키키 해변이나 빅아일랜드(Big Island)가 최고의 장소이다. 머리를 식히는데 최적의 장소이다. 머리를 리프레쉬하는 장소이다. 이렇게 휴가를 가면 사물을 바라보는 시각이 긍정적으로 바뀌고, 생각이 낙관적으로 바뀌고, 에너지와 아이디어를 다시 충전하고 일터로 돌아온다. 더 나아가 창의적 발상을 하게 되고, 일을 하거나 해결할 신기한 방법도 얻게 되는 경우가 많다. 그래서 휴식과 휴가는 꼭 필요하다. 여름에 한달 씩 휴가를 간다면 일의 효율이 두 배는 더 늘 것 같다.

KAIST 에 프랑스 학생들이 교환학생으로 온다. 교수들에 의하면 아주 우수한 학생들로 평가 받는다. 특히 일의 집중도가 매우 높다고 한다. 정해진 시간에만 일을 하지만 창의적이고, 독창적이면서, 일의 완결도가 높다고 한다. 아마 프랑스에서 여름 3개월을 휴가를 가기 때문일 수도 있다. 4차 산업혁명 시대에 꼭 필요한 소자인 디램에서 배우는 삶의 지혜이다.

최고의 휴가지로 추천하는 하와이 와이키키 해변 전경. [출처=네이버 블로그 ]

 

 joungho@kaist.ac.kr

 

[김정호 카이스트 전기 및 전자공학과 교수]

 

[뉴스핌 베스트 기사]

사진
광복군, 일본군 무장해제 "항복사실 모르느냐? 변상문의 '화랑담배'는 6·25전쟁 이야기이다. 6·25전쟁 때 희생된 모든 분에게 감사드리고, 그 위대한 희생을 기리기 위해 제목을 '화랑담배'로 정했다. 우리는 그들에게 전의(戰意)가 없는 것을 보이기 위해 기관단총을 모두 어깨에 걸쳤다. 그러고도 만일을 위해서 각각 산개하면서 뛰어내리기 시작했다. 드디어 내 차례가 왔다. 몸을 날렸다. 아. 그때 그 바람 냄새, 그 공기의 열기, 아른대는 포플러의 아지랑이, 그리고는 아무것도 순간적이었지만 보이지 아니했다. 그러나 어쩐 일인가? 우리 주변엔 돌격 태세에 착검한 일본군이 포위하고 있었다. 워커 구두 밑의 여의도 모래가 발을 구르게 했다. 코끼리 콧대 같은 고무관을 제독총에 연결한 험상궂은 방독면을 뒤집어쓴 일본군이 차차 비행기를 중심으로 원거리 포위망을 좁혀오고 있었다. 너무나도 위험한 상황이었다. 이것이 그리던 조국 땅을 밟고 처음 맞은 분위기였다. 동지들은 눈빛을 무섭게 빛내면서 사주경계를 했다. 그러나 아직 기관단총을 거머쥐지는 아니했다. 여의도의 공기가 움직이지 않는 고체처럼 조여들어 왔다. 뿐만 아니었다. 타고 온 C46형 수송기로부터 한 50여m 떨어진 곳의 격납고 앞에는 실히 1개 중대나 되는 군인들이 일본도를 뽑아 든 한 장교에게 인솔되어 정렬해 있었다. 그 앞에는 고급장교인 듯한 자들이 한 줄 또 섰고, 장군 몇 명도 있는 듯했다. 그러나 무엇보다도 8월 18일 한낮의 그 뜨거운 여의도 열기가 우리를 더욱 긴장시켰다. 격납고 뒤에까지 무장한 군인이 대기하고 있었다. 중형전차의 기관포도 이쪽을 향하고 있었다. 환호하는 광복군. [사진= 국사편찬위원회] 비행장 아스팔트 위엔 한여름의 복사열이 그 위기의 긴장처럼 이글대고 있었다. 어느새 우리는 땀에 젖어 있었다. 기막힌 침묵이 십여 분이나 지났다. 그러나 그들은 어떤 행동도 취해 오지 않았다. 마침내 우리가 발걸음을 옮겼다. 우리는 일본군 고급 장교들이 늘어선 쪽으로 한걸음 씩 움직였다. 각자 산개, 조심하라! 누군가가 이렇게 나직하게 말했다. 서해 연안으로 비행기가 고도를 낮출 때 누군가가 유서를 쓰던 일이 이 순간 내 머릿속에서 상기되었다. 일본군 병사들은 우리가 다가서자 의외로 포위망을 풀 듯이 비켜섰다. 우리는 아직 기관단총을 어깨에 멘 그대로였다. 일본군이 길을 열어주자, 그들도 일본군 육군 중장을 선두로 한 장교단이 우리 쪽으로 오기 시작했다. 그가 바로 조선주차군사령관 죠오쯔끼(上月良夫)였다. 쬬오쯔기는 그의 참모장 이하라 소장과 나남 사단장과 참모들을 뒤로 거느렸다. 우리도 좌우로 벌려 섰다. 쬬오쯔기가 「나니시니 이라시따노?(무슨 일로 왔소?)」말문을 열었다. 퍽 야무지게 보였다. 우리는 말 대신 영등포 상공에서 뿌리다 남긴 선전 전단을 내밀어 주었다. 우리의 임무가 일본어와 우리말로 적힌 전단이었다. 거긴 또 우리가 이렇게 들어오게 된 사연도 적혀있었다. 우리는 한 장씩 그 전단을 다른 일본군 장교들에게 나누어 주었다. 쬬오쯔끼는 이를 받아 읽고, "일본은 정전만 한 상태이니 일단 돌아갔다가 휴전 조약이 체결된 다음에 재입국하라"라고 말했다. 그러면서 은근히 위협했다. 자기네 병사들이 꽤 흥분되어 있으니, 만약 돌아가지 않으면 그 신변 보호에 안전책임을 지기가 어렵다는 분위기라고 했다. 이에 이범석 장군이 "네 놈들의 천황이 이미 연합국에 무조건 항복한 사실을 모르느냐? 이제부터는 동경의 지시가 필요 없다는 것을 알아야 한다"라고 맞섰다. 그러나 쉽사리 양보하지 않았다. 옥신각신 말이 몇 번 건너 왔다 갔다. 갑자기 쬬오쯔끼는 한 일본군 대령에게 일을 처리하라고 지시했다. 그러면서 그는 동경서 손님이 오기로 되어 있어 마중을 나와 있던 참이란 말을 하고는 물러가 버렸다" 이범석 장군은 일본군 측에 "조선 총독을 만나 담판 짓겠다'라고 요구했으나 거절당했다. 일본군 무장해제 임무를 띠고 국내로 들어 온 '광복군 국내정진군'은 아무런 소득도 올리지 못한 채 다음 날 8월 19일 14:30분 여의도 기지를 이륙하여 중국으로 돌아갔다. 광복군은 미군정이 시작되고 나서 한참이나 지난 다음에 개인 자격으로 귀국할 수밖에 없었다. 조짐이 좋지 않았다. / 변상문 국방국악문화진흥회 이사장   2025-09-29 08:00
사진
중국 전기차 주행거리 두배 증가 배터리 개발 [베이징=뉴스핌] 조용성 특파원 = 중국이 에너지 밀도를 두 배 증가시킬 수 있는 전고체 배터리를 개발해 낸 것으로 나타났다. 중국 칭화(淸華)대학 화학공학과의 연구팀은 '음이온이 풍부한 용매화 구조 설계'를 개발해 냈으며, 이를 기반으로 불소 함유 폴리에테르 전해질을 성공적으로 만들어냈다고 중국 관찰자망이 30일 전했다. 해당 연구 성과는 논문 형식으로 국제 학술지인 네이처에 등재되었다. 연구진이 만들어낸 폴리에테르 전해질은 고체이며, 연구팀은 해당 전해질을 사용하여 전고체 배터리를 제작했다. 제작된 전고체 배터리는 604Wh/kg의 에너지 밀도를 기록했다. 이는 현재 리튬 이온 배터리의 에너지 밀도가 150~320Wh/kg인 점을 감안하면 에너지 밀도가 두 배 이상 높아진 것이다. 동일한 무게의 배터리이지만 해당 전해질을 사용한 전고체 배터리는 두 배 이상의 전력을 충전할 수 있는 셈이다. 이론적으로 전기차의 1회 충전 주행 거리가 두 배 증가할 수 있게 된다. 현재 500km가량을 주행할 수 있는 전기차가 1000km를 주행할 수 있게 된다. 해당 전고체 배터리는 안전성 테스트도 통과하였다. 못을 박아도 화재와 폭발이 일어나지 않았다. 또한 120도의 높은 온도의 박스 안에 6시간 동안 방치되었지만, 연소나 폭발이 일어나지 않았다. 또한 500회 이상 충방전을 거치면서도 에너지 저장 용량은 안정적으로 유지되었다. 연구진이 만들어낸 전고체 배터리가 상용화된다면 많은 분야에서 활용이 가능해진다. 전기차의 주행 거리는 두 배 증가하며, 드론의 비행 거리도 두 배 증가하게 된다. ESS(에너지저장장치) 역시 부피당 저장 용량을 크게 끌어올리게 되며 ESS 소형화가 가능해진다. 칭화대 연구진이 개발한 전고체 전해질의 도식도 [사진=네이처 캡처] ys1744@newspim.com 2025-09-30 10:35
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동