전체기사 최신뉴스 GAM
KYD 디데이
산업 재계·경영

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능과 1만 시간 법칙

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

전문가로 성공하려면 30년은 걸린다

한 분야의 전문가로 성장하기까지 얼마의 시간이 필요한가 하는 질문을 가끔 하게 된다. 대학을 졸업하고 기업에 취직하거나, 공무원 시험에 합격하거나, 법학전문대학원을 나와 변호사가 되거나, 의대를 나와 의사 면허증을 따면 모든 것이 다 된 것 같지만, 실은 그렇지 않다. 단순히 전문가가 되기 위한 첫걸음일 뿐이다.

       김정호 교수

요리학교를 졸업하고 요리사 자격증을 취득했다고 바로 세계적인 요리사가 되거나 식당을 열 수는 없다. 이제 설거지부터 시작하고, 장도 보고, 손님을 맞이하고, 청소도 하고, 정산도 하고, 세금도 내고, 나중에는 경영의 기술도 배워야 한다.

그런 이유로 한 분야의 전문가가 되려면 대략 대학을 졸업하고 30년 걸린다고 본다. 그러면 나이가 50대 중반 혹은 후반이 된다. 이때가 되면 각 분야에서 전문가로 인정받을 수 있고, 기업에서는 CEO를 맡을 수 있는 나이가 된다. 이렇게 길게 한 분야의 전문가로 성장하려면 무엇보다도 자신의 분야에 대한 흥미, 끈기, 열정, 헌신과 같은 기초 체력이 필요하다.

전문가의 길도 꼭 마라톤 완주와 같다. 끝까지 마치는 체력과 집념이 필요하다. 그런데 이렇게 꾸준히 지속해서 오래 유지하는 힘의 원천이 ‘일의 재미’가 아닌가 한다. 그래서 ‘열심히 노력하는 전문가’보다는 ‘즐기는 전문가’가 더 성공할 확률이 높고 ‘즐기는 전문가’보다 ‘오래 하는 전문가’ 또는 ‘끝까지 하는 전문가’가 성공할 확률이 아주 높다.

시간이 쌓이면서 축적되는 경험, 기술, 네트워크가 재능과 성실 보다 더 강력하다. 거기에 주변에 쌓은 ‘신뢰’라는 큰 자산이 더해진다. 어찌하거나 30년은 필요하다. 그런 시대가 되었다. 초년에 ‘과거급제’ 같은 일은 없다.

정확함을 자랑하는 스위스 기차역 시계, [출처=tistory]

 

공학 분야 전문가가 되는 길

이렇게 공학 분야에서 30년 걸려 세계적 최고 전문가가 되기 위해서는 3가지 길이 있다고 생각한다. 먼저, 전문적인 한 가지 분야를 정해서 30년 동안 꾸준히 계속 연구하는 방법이다. 한 우물을 파는 방법이다.

이 경우, 연구 분야를 잘 선정해야 한다. 인류가 당면한 원천적인 문제이면서도 가슴을 흔드는 주제를 선택하면 좋다. 그리고 자신이 잘 할 수 있는 문제이면 더욱 좋다. 예를 들어 인류의 에너지, 식량, 환경, 생명 문제와 관련이 있으면 좋다. 최근 문제가 되는 ‘반도체 재료’ 분야도 좋은 예이다. 지금 주목받는 인공지능 연구를 지난 30년을 이미 연구했다고 상상해 보자. 대단한 업적을 남길 수 있다. 다만 실패하더라도 즐길 수 있어야 한다. 30년 후 빈손으로 돌아와도 좋다는 각오가 필요하다. 특히 30년간 꾸준히 연구를 지원받기 어려운 환경 속에서 본인의 집념이 필요하다.

두 번째 방법은 10년씩 한 분야에서 깊게 파고들어 경험을 쌓는다. 그러면서 10년 주기로, 다른 세 분야에 도전해서 전문성을 쌓는다. 세 가지 기둥을 쌓는 작업이다. 이렇게 세 분야에서 세계적 수준의 전문가가 되고 나서, 이 세 가지를 통합하는 시스템 전체의 개념과 설계 능력을 갖는다.

전자공학에서 반도체, 인공지능, 소프트웨어 세 분야를 10년씩 한다면 시스템 전체 설계 능력을 가지게 된다. 또 다른 조합은 반도체, 전력전자, 자동차 전자 조합이다. 이런 확고한 경험이 생기면 자율주행자동차를 설계할 수 있다. 또 다른 조합은 기술, 개발, 생산, 마케팅, 영업, 관리, 재무 등에서 세 분야를 각각 경험하는 것이다. 그러면 기업 CEO나 CTO를 맡을 수 있는 준비가 되어 있다고 생각한다. 기둥이 튼튼하면 무너지지 않고 오래가는 건축물을 설계할 수 있다. 1000년 가는 건축물을 지을 수 있는 것이다.

여러 개의 튼튼한 기둥이 지지하고 있는 석유 시추 구조물. [출처=tistory]

 

인간 세계의 1만 시간 법칙

‘1만 시간의 법칙’이라는 책은 신경과학자 다니엘 레비틴이 내놓은 연구 결과로 알려진 ‘1만 시간의 법칙(The 10,000-Hours Rule)’을 설명한다. 하루 세 시간을 10년간, 즉 1만 시간을 노력하면 누구나 성공할 수 있다는 이야기이다. 책은 성공한 사람들을 자주 취재하며 그들의 특징을 살펴본 결과, 모두 한 가지 일을 최소한 1만 시간 넘게 했다는 공통점이 있다고 주장한다. 성공하는 3단계가 좋아하는 일을 찾아(1단계) 신중한 연습을 하면(2단계) 성취와 자신감을 얻는다(3단계)고 한다.

하루 3시간 몰입한다고 하면, 1년에 약 1000시간이 걸리며, 총 1만 시간을 몰입하려면 10년이 걸린다는 뜻이다. 그런데 하루 3시간 한 개의 주제에 몰입하기는 쉽지 않다. 필자에게는 주로 새벽에 일어나 출근 전 3시간 정도가 가장 몰입하기 좋은 시간이다. 이 시간이 10년 쌓이면 1만 시간 법칙에 따라 그 분야에 어느 정도 전문가로 활동할 역량을 갖게 된다.

이 1만 시간의 법칙을 3번 정도 해야 진정한 글로벌 전문가로 태어난다고 주장한다. 특히 세 가지 분야를 통합하고 남과 차별되는 관점, 통찰력, 판단 그리고 실행력과 이를 뒷받침하는 신뢰와 지지의 네트워크가 필요하다. 여기에 더해서 리더십, 윤리, 투명, 건강한 정신과 육체가 결합해야 한다. 국제 시장에서 인정받을 수 있는 전문가는 하루아침에 나오지 않는다. 100세 수명 시대이니 너무 급하게 생각할 것은 없다.

'1만 시간의 법칙'을 설명한 신경과학자 다니엘 레비틴의 저서 '1만 시간의 법칙'. [출처=yes24]

 

인공지능 세계의 1초 법칙

그런데 슈퍼컴퓨터로 무장한 인공지능은 전문가로 되기 위한 학습에 1초도 걸리지 않는다. 인공지능 컴퓨터가 단위 계산을 하는 데 걸리는 시간이 피코초(ps, 1조분의 1초) 단위밖에 되지 않는다. 그러니 1초에 조 단위 횟수로 여러 번 계산할 수 있다.

그런데 여기에 더해 이러한 컴퓨터를 수천 대, 수만 대 병렬연결하고 협력해서 수행한다. 이를 병렬 컴퓨팅이라고 한다. 그뿐만 아니라 단위 프로세서인 CPU, GPU 내에서도 단위 계산기 수천, 수만 개가 협력해서 병렬로 계산을 수행한다.

이처럼 인공지능 컴퓨터는 단위 계산 속도도 빠르지만, 병렬 계산을 통해서 동시에 데이터를 처리하는 계산 용량도 어마어마하게 크다. 여기서 처리라고 하는 것은 데이터를 통해 인공지능이 학습하는 과정(Learning Process)과 인공지능이 판단 과정(Inference Process)을 모두 포함한다.

여기에 더해 인공지능 컴퓨터는 클라우드 컴퓨팅 시스템을 통해 실시간으로 데이터를 모은다. 그 속도가 컴퓨터 한 대가 1조 바이트(Tera Byte)를 모으는 데 1초도 걸리지 않는다. 그런 컴퓨터 수백만 대가 같이 데이터를 모은다고 가정해 보자. 엄청난 데이터를 순식간에 모은다. 그런 목적으로 5G 통신 네트워크도 구축되고 있다. 따라서 인공지능 컴퓨터는 시간과 속도, 그리고 정확성에서 인간의 능력을 넘는다.

인간이 ‘1만 시간의 법칙’을 따라 30년 걸려 전문가가 된다면, 인공지능 컴퓨터는 세계 최고 전문가로 행동하는데 겨우 1초밖에 걸리지 않는다. 여기에 더해 인공지능 컴퓨터는 실수도 하지 않는다. 빠르게 배우고 빠르게 판단한다. 인간이 더는 경쟁하기 어렵다. 단지 비싸고, 비용이 많이 들고, 전기 소모가 크다는 점이 조금의 위안이다.

미국 오크 릿지 국립 연구소(Oak Ridge National Laboratory)의 AI 슈퍼 컴퓨터 Summit의 용량. [출처=KAIST]

 

joungho@kaist.ac.kr

 

[김정호 카이스트 전기 및 전자공학과 교수]

[뉴스핌 베스트 기사]

사진
내년 의대 490명 더 뽑는다 [서울=뉴스핌] 황혜영 기자 = 2027학년도 의과대학 모집 정원이 3548명으로 늘면서 전년보다 490명이 증원된다. 이에 따라 의대 합격선 하락과 재수 이상 'N수생' 증가, 상위권 자연계 입시 재편 등 입시 지형 변화가 불가피할 것으로 보인다. 10일 열린 보건복지부의 보건의료정책심의위원회(보정심)에 따르면 2027학년도 의대 정원이 현행 3058명에서 490명 늘린 3548명으로 확정됐다. 2028·2029학년도에는 613명, 2030·2031학년도에는 813명씩 증원하기로 했다. [서울=뉴스핌] 정일구 기자 = 정부가 2027∼2031학년도 의과대학 정원을 오늘 확정한다. 보건복지부는 10일 오후 보건의료정책심의위원회(보정심) 제7차 회의를 열고 의대 정원 규모를 논의한 뒤 브리핑을 진행해 2027∼2031학년도 의사인력 양성 규모와 교육현장 지원 방안을 발표할 예정이다. 사진은 이날 서울시내 의과대학 모습. 2026.02.10 mironj19@newspim.com 2027학년도 증원분 490명은 비서울권 32개 의대를 중심으로 모두 지역의사제 전형으로 선발되며 해당 지역 중·고교 이력 등을 갖춘 학생만 지원할 수 있는 구조다. 입시업계는 이번 정원 확대가 '지역의사제' 도입과 맞물려 여러 학년에 걸쳐 입시 전반을 흔들 것으로 보고 있다. 이번 증원은 현 고3부터 중학교 2학년까지 향후 5개 학년에 영향을 미칠 것으로 분석된다. 특히 의대 정원 확대에 따른 합격선 하락이 예상된다. 종로학원 분석에 따르면 2025학년도 의대 정원 확대로 합격선 컷이 약 0.3등급 낮아졌으며, 이번 증원도 최소 0.1등급가량 하락을 불러올 것으로 보인다. 당시 지역권 대학의 경우 내신 4.7등급대까지 합격선이 내려오기도 했다. 합격선 하락은 상위권 학생들의 '반수'와 'N수생' 증가로 이어질 가능성이 크다. 임성호 종로학원 대표는 "의대 문턱이 낮아질 것이란 기대가 생기면 최상위권은 물론 중위권대 학생까지도 재도전에 나설 가능성이 커진다"고 전망했다. 특히 2027학년도 입시가 현행 9등급제 내신·수능 체제의 마지막 해라는 점에서 이미 내신이 확정된 상위권 재학생들이 반수에 나설 가능성도 제기된다. 지역의사제 도입은 중·고교 진학 선택에도 적지 않은 영향을 미칠 것으로 보인다. 지역전형 대상 지역의 고교에 진학해야 지원 자격이 주어지기 때문에 서울·경인권 중학생 사이에서는 지방 또는 경기도 내 해당 지역 고교 진학을 고려하는 움직임이 예상된다. 또 일반 의대와 지역의사제 전형 간 합격선 차이도 발생할 것으로 관측된다. 지원 단계부터 일반 의대를 우선 선호하는 경향이 강해 동일 학생이 두 전형에 합격하더라도 일반 의대를 택할 가능성이 높아 지역의사제 전형의 합격선은 다소 낮게 형성되고 중도 탈락률도 상승할 수 있다는 전망이 나온다. 전형 구조 측면에서도 변화가 예상된다. 김병진 이투스교육평가연구소 소장은 "490명 증원 인원 전체가 일반 지원자에게 해당되지는 않으며 지역인재전형과 일반전형으로 나눠 보면 실제 전국 지원자에게 영향을 주는 증원 규모는 약 200명 수준일 것"이라고 분석했다. 또 "최근 3년간 입시에서 모집 인원 변동에 가장 민감하게 반응한 전형은 수시 교과전형, 특히 지역인재전형이었다"며 "이번 증원에서도 교과 중심 지역인재전형의 모집 인원 증가 폭이 전체 입시 흐름을 결정할 것"이라고 전망했다.  hyeng0@newspim.com 2026-02-10 19:32
사진
알파벳 '100년물' 채권에 뭉칫돈 [뉴욕=뉴스핌] 김민정 특파원 = 인공지능(AI) 투자를 위한 실탄 확보에 나선 구글의 모기업 알파벳이 발행한 '100년 만기' 채권이 시장에서 뜨거운 반응을 얻었다. 100년 뒤에나 원금을 돌려받는 초장기 채권임에도 불구하고, 알파벳의 재무 건전성과 AI 패권에 대한 투자자들의 신뢰가 확인됐다는 평가다. 10일(현지시간) 블룸버그통신은 소식통을 인용해 알파벳이 영국 파운드화로 발행한 8억5000만 파운드(약 1조6900억 원) 규모의 100년 만기 채권에 무려 57억5000만 파운드의 매수 주문이 몰렸다고 보도했다. 이날 알파벳은 3년물부터 100년물까지 총 5개 트랜치(만기 구조)로 채권을 발행했는데, 그중 100년물이 가장 큰 인기를 끌었다. 알파벳은 올해 자본지출(CAPEX) 규모를 1850억 달러로 잡고 AI 지배력 강화를 위한 공격적인 행보를 이어가고 있다. 이를 위해 전날 미국 시장에서도 200억 달러 규모의 회사채 발행을 성공적으로 마쳤다. 강력한 수요 덕분에 발행 금리는 당초 예상보다 낮게 책정됐다. 또한 스위스 프랑 채권 시장에서도 3년에서 25년 만기 사이의 5개 트랜치 발행을 계획하며 전방위적인 자금 조달에 나섰다. 100년 만기 채권은 국가나 기업의 신용도가 극도로 높지 않으면 발행하기 어려운 '희귀 아이템'이다. 기술 기업 중에서는 닷컴버블 당시 IBM과 1997년 모토롤라가 발행한 사례가 있으며, 그 외에는 코카콜라, 월트디즈니, 노퍽서던 등 전통적인 우량 기업들이 발행한 바 있다. 기술 기업이 100년물을 발행한 것은 모토롤라 이후 약 30년 만이다. 미국 캘리포니아주 마운틴뷰의 구글.[사진=로이터 뉴스핌] 2026.02.11 mj72284@newspim.com ◆ "알파벳엔 '신의 한 수', 투자자에겐 '미묘한 문제'" 전문가들은 이번 초장기채 발행이 알파벳 입장에서는 매우 합리적인 전략이라고 입을 모은다. 얼렌 캐피털 매니지먼트의 브루노 슈넬러 매니징 파트너는 "이번 채권 발행은 알파벳 입장에서 영리한 부채 관리"라며 "현재 금리 수준이 합리적이고 인플레이션이 장기 목표치 근처에서 유지된다면 알파벳과 같은 기업에 초장기 조달은 매우 타당한 선택"이라고 평가했다. 그러면서 "알파벳의 견고한 재무제표와 현금 창출 능력, 시장 접근성을 고려할 때 100년 만기 채권을 신뢰성 있게 발행할 수 있는 기업은 전 세계에 몇 안 된다"고 강조했다. 하지만 투자자 입장에서는 신중해야 한다는 지적도 나온다. 초장기채는 금리 변화에 따른 가격 변동성(듀레이션 리스크)이 매우 크기 때문이다. HSBC은행의 이송진 유럽·미국 크레딧 전략가는 "AI 산업 자체는 100년 뒤에도 존재하겠지만, 생태계가 5년 뒤에 어떤 모습일지조차 예측하기 어렵다"며 "기업 간 상대적인 서열은 언제든 뒤바뀔 수 있다"고 꼬집었다. 실제로 금리 상승기에는 초장기채의 가격이 급락할 위험이 있다. 지난 2020년 오스트리아가 표면금리 0.85%로 발행한 100년 만기 국채는 이후 금리가 오르면서 현재 액면가의 30%도 안 되는 가격에 거래되고 있다. 이를 두고 슈넬러 파트너 역시 "투자자 입장에서 이 채권의 매력은 훨씬 미묘하고 복잡한 문제"라고 했다. mj72284@newspim.com 2026-02-11 01:35
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동