전체기사 최신뉴스 GAM 라씨로
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 계룡산에서 배우는 인공지능의 학습 원리

기사입력 : 2019년10월07일 08:00

최종수정 : 2019년10월07일 08:00

김정호 교수.

두 갈래 계룡산 등산로 

지난 주말, 국내 대표적인 반도체 기업의 임원 10여명과 카이스트(KAIST) 교수 10여명이 함께 1박2일로 충남 계룡산에 모여 토론을 겸한 친목 모임을 했다. 모두 바쁜 가운데도 어렵게 귀중한 자리를 같이했다.

앞으로 반도체 산업의 기술 발전 방향, 기술개발, 인력육성과 상호협력 방안도 논의했다. 특히 토론 속에서도 가을 풍경과 냄새가 눈과 코를 즐겁게 했다. 계룡산 정기를 받아 국내 반도체 산업의 계속된 성장을 기원해 본다.

계룡산 동쪽에는 동학사라는 절이 있고, 계룡산 서쪽 공주 방면에는 갑사라는 절이 있다. 그래서 주말에 가끔 산책 겸 등산도 하게 된다. 등산로 입구의 음식점에 들러 맛있는 식사를 해서 말(馬)도 아닌데 가을 살이 찌게 된다. 계룡산은 근처 대청댐과 함께 대전 연구단지의 커다란 자연환경 자산이다. 집에서 30분 이내에 이러한 국립공원이 있다는 사실은 큰 행운이다.

그런데 동학사에서 출발하는 계룡산 등산로에는 대표적인 두 가지 등산로가 있다. 먼저 하나는 동학사 입구 매표소 바로 우측으로 올라가는 등산로이다. 이 등산로를 잡으면 산등성이를 타고 쭉 정상으로 등산하게 된다. 처음에는 조금 가파르지만, 나중에는 완만하게 산꼭대기까지 능선을 타고 간다. 그래서 남매탑을 지나 최종적으로 계룡산 정상에 오르게 된다.

또 다른 등산로는 동학사 절을 지나 계곡을 따라 계속 올라가는 등산로이다. 쭉 계곡을 오르다 보면 물길 흐르는 개울 소리와 바람에 흔들리는 나뭇잎 소리, 낙엽을 밟는 발자국 소리를 듣게 된다.

개울에 가을 단풍 낙엽도 떠다닌다. 이렇게 계속 오르다 보면 은선 폭포를 지나게 된다. 이 등산로의 장점은 물길을 따라가기 때문에 물소리를 들을 수 있다는 점이다. 능선 길에서는 볼 수 없는 풍경이다. 하지만 등산 막바지에 높은 각도의 오르막을 숨이 차게 한참 올라가야 한다. 정상에 오를 때 막판에 힘이 든다.

2019년 9월 말 계룡산 자락의 한옥 마당 앞에 핀 코스모스. [출처=KAIST]

인공지능 학습은 등고선 미분

이처럼 산속에서의 물길은 가파른 계곡을 따라 흐른다. 산의 등고선을 그린다면 산의 등고선이 빽빽한 부분에서 산의 경사가 크고, 그 경사 방향으로 물이 흐르고 계곡이 생긴다.

물이 중력의 힘에 따라 흐르고 중력은 높은 산의 경사를 좋아한다. 산의 등고선과 직각 방향으로 물의 힘이 가해지고, 그에 따라 물길이 생긴다.

그런데 인공지능도 계룡산 물길과 같이 등고선의 직각 방향의 계곡으로 빠르게 '학습(Learning)'해 간다. 인공지능도 경사가 급한 물길을 좋아한다.

인공지능의 핵심은 기존의 해석적 모델이 아니라 데이터를 이용해 학습하는 알고리즘인 '기계학습(Machine Learning)'이다. 이런 이유로 인공지능 학습에 빅데이터가 꼭 필요하다. 그 결과 인공지능과 빅데이터는 서로 떼려야 뗄 수 없는 숙명적인 관계가 된다.

기계학습 중에서 특히 정답을 이용해 학습하는 방법을 '지도학습(Supervised Learning)'이라고 부른다. 그래서 인공지능 기계학습 개발 과정에서 데이터를 이용해서 학습해 나간다. 이 과정을 순방향 학습(Forward Propagation)이라고 한다.

그리고 다시 정답을 비교해 인공지능 신경망 속의 수백만 또는 수천만 변수(Weight)를 보정해 가는 과정을 역전파 학습(Backward Propagation)이라고 부른다. 이러한 역전파 학습 과정에서 최대한 빠른 시간에 학습을 마치고 변수(Weight)들을 확정할 필요가 있다.

이러한 방법 중에 가장 많이 쓰이는 최적화 방법이 경사하강법(Gradient Descent)이다. 쉽게 표현한다면 정답과의 차이를 비용함수(Cost Function)라고 부르는데, 이 비용함수를 미분해서 기울기가 '0'이 되는 지점으로 변수를 조정해 가는 방법이다.

인공지능 기계학습에 사용되는 경사하강법(Gradient Descent) 설명 노트. [출처=KAIST]

등산으로 치면 계곡을 따라 하산하고, 등산로 입구까지 빨리 내려오는 방법이 경사하강법이다. 고등학교와 대학에서 배우는 미분법이 여기에 사용이 된다. 그래서 인공지능 학습과정에서 행렬 다음으로 많이 사용되는 수학이 '미분(Differentiation)'이다.

계룡산을 비롯한 산 주변의 지형의 굴곡은 등고선으로 표현할 수 있다. 수학적으로 보면 이 등고선의 직각 방향으로 가장 가파른 계곡을 만난다. 다르게 이야기하면 어느 지점에서 등고선과 직각 방향이 가장 가파르다. 그 방향으로 물이 흐르고, 인공지능도 그 방향으로 학습 최적화를 한다. 이런 등고선 함수를 미분하면 직각 방향으로 벡터가 만들어진다. 수학적으로 벡터 미분(Gradient)이라고 부른다.

결국 등고선 미분 방향으로 계속 가면 계곡을 만나고, 계곡 따라 물이 흐른다. 인공지능도 마찬가지로 비용함수의 등고선의 미분 벡터 방향을 따라 빠르게 학습해 간다. 물을 만나 계곡의 바닥을 만나면 학습을 멈춘다. 이처럼 계룡산 계곡의 물흐름과 인공지능 학습은 같은 원리를 따른다. 이는 우연의 일치일 수도 있고, 자연의 섭리일 수도 있고, 외계인의 암호 코드일 수도 있다.

인공지능의 최적화

등산으로는 계룡산도 좋고, 속리산도 좋고, 설악산도 좋다. 아울러 외국의 산 중에는 경험상 캐나다 로키산맥 속의 재스퍼 국립공원(Jasper National Park)이 가장 웅장하고 아름답다. 6월 말이면 빙하가 녹아내려 호수를 이루고, 계곡물이 세차게 흐른다.

그 빼어난 산맥이 수백 킬로미터에 걸쳐 병풍처럼 펼쳐져 있다. 빙하가 녹은 물에는 광물이 녹아 있어 햇빛을 받으면 에메랄드 색깔을 나타낸다. 공통적으로 계룡산, 설악산, 안데스 산맥의 마추픽추 계곡, 로키 산맥의 폭포수 모두 산 등고선의 미분 벡터 방향으로 물이 흐른다.

인공지능은 냉정하고 인간미가 없고, 오직 정확성과 효율성만 따진다. 그래서 인공지능에게는 인간미가 없다고 볼 수 있다. 유일하게 위안으로 삼고자 하는 점은, 인공지능도 '산과 계곡의 모습'을 따른다는 점이다. 보통 산을 좋아하고 계곡을 좋아하면 인자한 사람이다.

캐나다 로키 산맥 재스퍼 국립공원(Jasper National Park) 속의 설산과 에메랄드 빛 호수 사진. [출처=KAIST]

 

[김정호 카이스트 전기 및 전자공학과 교수] joungho@kaist.ac.kr

CES 2025 참관단 모집

[뉴스핌 베스트 기사]

사진
모델 문가비 아들 친부는 정우성 [서울=뉴스핌] 양진영 기자 = 모델 문가비(35)가 출산한 아들의 친부가 배우 정우성(51)인 것으로 드러났다. 정우성 소속사 아티스트컴퍼니는 24일 "문가비가 소셜미디어를 통해 공개한 아이는 정우성의 친자가 맞다"며 "아이의 양육 방식에 대해서 최선의 방향으로 논의 중이다. 아버지로서 아이에 대해 끝까지 책임을 다할 것"이라고 밝혔다. 다만 "출산 시점과 두 사람의 교제 여부, 결혼 계획 등 사생활 관련 내용은 확인해 줄 수 없다"고 알렸다. 배우 정우성 [사진=에이스메이커무비웍스] 앞서 두 사람 사이의 득남 소식이 알려졌다. 두 사람은 2022년 한 모임에서의 만남 가까이 지냈으나 교제한 사이는 아니었고 결혼 계획도 없는 것으로 전해졌다. 작년 6월 문가비가 임신 사실을 알렸고 정우성은 양육의 책임을 약속했다고 한다. 문가비는 뷰티 예능 프로그램 '겟잇뷰티' 등으로 얼굴을 알린 한동안 활동을 중단했다가 지난 22일 인스타그램을 통해 아들 출산 사실을 고백했다. 그러나 결혼 여부나 아이 아버지에 관한 언급은 없어 궁금증을 샀다. 당시 문가비는 "너무 갑작스럽게 찾아온 소식에 아무 준비가 돼 있지 않았던 저는 임신의 기쁨이나 축하를 마음껏 누리기보다는 가족들의 축복 속에 조용히 임신 기간 대부분을 보냈다"며 "그렇게 하기로 선택한 건 오로지 태어날 아이를 위함이었다. 마음 한편에 늘 소중한 무언가를 지키기 위해서는 꽁꽁 숨겨야 한다고 생각했다"고 했다. [사진=문가비 인스타그램] 이어 "세상에 나온 아이를 앞에 두고 여전히 완벽한 준비가 되지 않은 엄마지만 그런 내 부족함과는 상관없이 존재 자체만으로 나의 마음을 사랑으로 채워주는 아이를 보며, 완벽함보다는 사랑과 행복으로 가득 찬 건강한 엄마가 돼야겠다고 다짐했다"며 "그러기 위해서는 용기를 내야 한다고 생각했다"고 말했다. 문가비는 1989년생으로 2017년 온스타일 예능 '매력티비'와 '겟잇뷰티'로 얼굴을 알렸다. 이후 SBS '정글의 법칙'과 KBS '볼빨간 당신' 등 각종 예능에 출연했다. 여러 광고와 헤라서울패션위크 등 패션쇼 무대에도 섰다. jyyang@newspim.com 2024-11-25 09:48
사진
이재명 '위증교사' 1심 김동현 판사 누구 [서울=뉴스핌] 배정원 기자 = 이재명 더불어민주당 대표의 위증교사 혐의 1심 선고를 맡은 서울중앙지법 형사합의33부 재판장에 대한 관심이 집중되고 있다. 서울중앙지법 형사합의33부(김동현 부장판사)는 25일 오후 2시 위증교사 혐의로 기소된 이 대표의 1심 선고공판을 진행한다.  전라남도 장성 출신의 김동현 부장판사는 고려대학교 법학과를 졸업하고 2001년 사법연수원을 30기로 수료했다. 김 부장판사는 2004년 광주지법 판사를 시작으로 인천지법, 서울동부지법, 서울고법 등을 거쳐 지난해부터 선거·부패 사건을 전담하는 서울중앙지법 형사합의33부 부장판사로 재직하고 있다. [서울=뉴스핌] 이형석 기자 = 이재명 더불어민주당 대표가 25일 오전 서울 여의도 국회에서 열린 최고위원회의에 자리하고 있다. 2024.11.25 leehs@newspim.com 김 부장판사는 이 대표의 위증교사 사건 외에도 '대장동·위례신도시·성남FC·백현동 의혹' 사건을 함께 심리하고 있는데, 해당 사건은 기록의 양이 방대하고 쟁점이 복잡해 1심 선고를 하기까지 몇 년이 더 걸릴 수 있다는 전망이 나온다. 당초 이 대표 측은 두 사건을 분리해서 진행할 경우 방어권 보장에 어려움을 겪게 된다며 병합 심리를 요구했으나, 김 부장판사는 두 사건을 병합하지 않고 별도로 진행하기로 결정했다. 또 김 부장판사는 이른바 '가짜 수산업자'에게 금품을 받은 혐의로 기소된 박영수 전 특별검사(특검)의 1심 사건을 맡으며 징역 4개월에 집행유예 1년을 선고하기도 했다. 당시 김 부장판사는 "이 사건 범행으로 공직자의 공정한 직무수행과 공공기관에 대한 국민의 신뢰가 크게 훼손됐다"며 "특히 박영수 피고인은 국정농단 규명을 위해 임명된 특별검사로 어느 공직자보다 공정성과 청렴성에서 모범을 보여야함에도 금품을 수수했다"고 질책했다. 박 전 특검 등에게 금품을 제공한 혐의로 기소된 가짜 수산업자 김모 씨에 대해서는 "다수의 공직자에게 긴 시간 금품을 제공한 점, 이종범죄로 처벌받은 전력이 있는 점 등을 고려했다"며 징역 6개월의 실형을 선고했다. 또 김 부장판사는 이명박 정부 시절 이른바 '스파르타팀'을 꾸려 정부에 우호적인 방향으로 온라인 여론을 조작한 혐의 등으로 기소된 전직 청와대 비서관들에게도 징역형 집행유예를 선고한 바 있다.  이런 가운데, 위증교사 혐의는 이 대표의 형사 사건 중 가장 불리한 판결이 나올 가능성이 높은 사건으로 꼽히고 있다. 검찰에 따르면 최근 6년간 유죄가 확정된 위증교사 사범 195명 중 실형(69명)이나 징역형 집행유예(114명)가 선고된 사례는 94.8%에 이르며 벌금형(12명) 선고 비율은 6.2%에 그쳤다. 이 대표가 만약 위증교사 혐의로 대법원에서 금고 이상의 형(집행유예 포함)을 확정받으면 공직선거법 제19조에 따라 피선거권이 박탈돼 형이 실효될 때까지 선거에 출마할 수 없게 된다.  jeongwon1026@newspim.com 2024-11-25 11:19
안다쇼핑
Top으로 이동