전체기사 최신뉴스 GAM
KYD 디데이
오피니언 내부칼럼

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능에서 노벨상이 나온다

기사입력 : 2019년10월21일 08:00

최종수정 : 2019년10월21일 08:00

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

[편집자] 4차 산업혁명은 모든 사물과 인간을 연결하여 빅데이터를 모으고, 이를 이용하여 인공지능으로 학습하여, 결국 인공지능이 인간을 대체하는 시대를 말한다. 이러한 4차 산업혁명의 물결이 산업뿐만 아니라 경제, 사회, 정치 등 전 분야에 걸쳐서 막대한 변화를 일으키고 있다.

글로벌뉴스통신사 뉴스핌은 '김정호의 4차혁명 오딧세이' 칼럼을 매주 연재하여 4차 산업혁명의 본질과 영향, 그리고 전망을 독자들에게 쉽게 소개하고자 한다. 4차 산업혁명의 핵심은 바로 인공지능, 빅데이터, 클라우드 컴퓨팅으로 표현할 수 있으며 그 핵심 부품이 반도체이다. 이들 핵심 기술의 개념과 원리, 응용을 설명하여 일반 독자들이 4차 산업혁명에 대해서 공감하고 이해하며 더 나아가 개인과 기업, 국가의 미래를 계획하는 것을 돕고자 한다.

김정호 카이스트(KAIST) 전기 및 전자공학과 교수는 서울대 전기공학과를 졸업하고 미국 미시건대에서 박사 학위를 받았다. AI대학원 겸임교수, IEEE펠로우, 카이스트 ICT석좌교수, 한화 국방 인공지능 융합연구 센터장, 삼성전자 산학협력 센터장 등을 겸하고 있다.

 

 노벨상의 조건

이번 달은 노벨상이 연속해서 발표되는 시기이다. 매년 기다렸지만, 아쉽게도 한국 과학자 중에서 아직 노벨상이 나오지 않았다. 매년 많은 연구비를 지원하는 정부나 국민 입장에서도 실망감이 클 것으로 생각한다. 하지만 상당히 오랜 기간 한국에서 과학 분야 노벨상 수상은 나오지 않을 전망이다.

노벨상 중에 과학분야상은 인류 발전과 복지에 지대한 영향을 미치는 과학적 발견이나 발명을 처음으로 달성한 과학자들에게 돌아간다. 여기서 핵심 단어가 '인류 발전과 복지에 지대한 영향'과 '과학적 발견이나 발명', 그리고 '처음'이다.

김정호 교수

한국에서 노벨 물리학상, 화학상, 의학상 등 과학상이 나오기 어려운 원인은 바로 '처음'이라는 요구조건 때문이라 생각한다. 한국에서 교수나 연구자들은 대부분 과학 선진국에서 이미 시작한 연구를 따라 하는 경우가 대부분이다. 추종 연구나 개선 연구이다.

또는 해외에서 박사학위를 받을 때 연구한 분야나 주제를 갖고 와서 평생 연구하는 경우가 많다. 논문은 나오지만, 대부분 연구 결과를 조금 개선할 뿐이지 처음 그 연구를 시작한 독창적인 연구자는 아니다. 이러한 추종 연구를 일명 이를 '설거지 연구'라고 부르기도 한다. 이러한 주제로 아무리 많은 인력과 연구비를 투자해도 노벨상이 나오지 않는다.

독창적이고 창의적인 연구를 처음으로 시작하기 위해서는 탐험정신과 도전정신, 차별화, 용기가 필요하다. 여기에 더해서, 이러한 외로운 연구를 30년 가까이 하기 위해서는 열정과 신념이 필요하다. 이러기 위해서는 상당한 통찰력과 위험 감수가 필요하다.

주제는 인류의 생명과 환경, 안전에 대한 근본적인 해결책이 되는 주제여야 한다. 그리고 위험도가 높은 독창적인 연구를 30년 지원할 수 있는 연구 지원 체계와 문화가 필요하다.

우리 교육 체계의 변화가 필요한 시점이 되었다. 우리 교육체계는 주입식으로, 정답이 있는 문제를 열심히 푸는 것으로 성적을 매긴다. 그 결과, 교육이 인간의 호기심과 도전을 격려하고 증폭하기보다는 사회적, 경제적 '계층 이동'을 위한 수단으로서의 의미가 더욱 강조되고 있다. 이러한 조건에서 노벨상을 기대하기 더욱더 어렵다.

인공지능 분야가 노벨상 후보다

4차 산업혁명 시대를 맞아 인공지능이 점점 더 중요해지고 있다. 인공지능이 인간을 대신해서 노동하고, 그 결과 인간에게 시간과 노동으로부터의 자유를 선물하기 시작했다. 인공지능은 과학 기술과 정치, 경제뿐만 아니라 산업 전체에도 큰 영향을 미치기 시작했다.

앞으로 이러한 영향은 더 깊고 넓게 퍼질 전망이다. 여기서 과학 기술적 동력은 딥러닝(Deep Learning) 혹은 기계학습(Machine Learning)이라고 불리는 인공지능이다.

그래서 필자는 10년 전후로 인공지능 발명자가 당연히 노벨상 수상자가 될 것으로 판단한다. 현재 과학기술의 발명 중에 인공지능만큼 강력한 영향을 미치는 기술 진보가 생각나지 않는다. 당분간 그럴 것이다.

인공지능 분야에서 노벨상을 받는다면, 5명의 후보를 들 수 있다. 캐나다 토론토 대학의 제프리 힌턴(Geoffrey Hinton) 교수, 페이스북의 얀 르쿤(Yann LeCun) 박사, 캐나다 몬트리올 대학의 요수아 벤지오(Yoshua Bengio) 교수, 앤드루 응 전 스탠퍼드대 컴퓨터공학과 교수이다.

마지막으로 GAN(Generative Adversary Network) 인공지능을 개발한 이안 굿펠로우(Ian GoodFellow)를 들 수 있다. 이들은 인공지능 딥러닝 기술을 처음 시작했거나, 이후 크게 발전시키거나, 확대하는 데 결정적인 역할을 했다.

업적 관점에서 보면, 제프리 힌튼 교수는 인공지능 딥러닝 분야의 진정한 선구자로 특히 학습과정인 역전파 학습(Back Propagation) 기법과 CNN(Convolution Neural Network) 발전에 크게 기여했다.

얀 르쿤 박사는 CNN을 이용한 컴퓨터 영상 인식(Computer Vision)과 인공지능 문자인식(Optical Character Recognition)으로 유명하다. 요슈아 벤지오 교수는 최근 큰 관심을 끌고 있는 새로운 딥러닝 인공지능 알고리즘인 GAN 알고리즘의 창시자이다.

GAN 인공지능의 수학적 토대를 마련한 이안 굿펠로우(Ian Goodfellow). [출처: Youtube 캡쳐]

마지막으로 이안 굿펠로우는 창조 작업에 쓰이는 GAN의 수학적 토대를 마련했다. 아쉽게도 여기에 한국인 과학자의 이름은 없다. 이러한 배경으로 한국에서 인공지능 분야에서 노벨상 수상자가 나올 가능성이 매우 희박하다.

한국에서 노벨상은 메모리 분야에서 나온다

만약, 미래에 한국에서 노벨상이 나온다면 디램(DRAM)을 포함한 반도체 메모리 분야일 가능성이 높다.

왜냐하면 인공지능, 빅데이터 세상에서 컴퓨터로 데이터를 처리하는 데 메모리만큼 중요한 부품이 없다. 메모리의 혁신은 컴퓨터 성능의 획기적인 향상을 구할 수 있다. 손안의 스마트폰에 인공지능이 들어오려면, 누구나 쉽게 인공지능을 쓰려면, 새로운 반도체 메모리가 필요하다.

지금보다 더 빠르고, 더 적은 전력소모와 늘어난 용량을 가지면서 프로세서와 결합한 형태가 될 수도 있다. 그 형태가 새로운 물질을 이용한 디램(DRAM)의 형태, 메모리 셀의 3차원 구조, 3차원 패키지 구조, 혹은 뉴로모픽과 같은 인공지능 가속기 형태일 수 있다. 여기에 더해 메모리에서 열을 냉각할 수 있는 독창적인 구조에서 나올 수도 있다.

메모리는 4차 산업혁명에서 가장 중요한 부품이다. 그러니 한국에서 노벨상이 나오려면 메모리 연구를 지금부터 30년간 지원하면 제일 가능성이 높다. 다행히 반도체 메모리 분야에서 한국 산업이 세계 1등이다. 한국에서 노벨상을 배출하려면 반도체 메모리를 더욱 열심히 연구하며 개발하면 언젠가 가능하게 된다.

나노미터 단위의 반도체 메모리 디램(DRAM) 셀의 단면 전자 현미경(SEM) 사진. [출처=KAIST]

인공지능 방법 중에 강화학습(Reinforcement Learning)이라는 알고리즘이 있다. 이러한 강화학습 알고리즘은 탐험과 탐색을 좋아한다. 끊임없이 새로운 시도를 하고, 그 결과를 기록한다. 이러한 자체 학습 과정을 통해서 최적의 솔루션을 찾는다.

인공지능 바둑 프로그램인 알파고에서도 이와 같은 강화학습 알고리즘을 사용했다. 이 탐험 과정에서 수천만 번도 더 다시 탐험한다. 여기서 체력은 전기에너지에서 공급받는다. 인간은 한두 번 시도하고 실패하면 그만두지만, 컴퓨터는 계속한다. 그래서 인공지능이 인간보다 더 똑똑할 수도 있다.

우리가 과학 기술 분야에서 포기하지 않고 끝까지 연구하는 힘은 결국 '호기심'과 과학적 탐구에 대한 '열정'이 아닐까 한다. 그리고 이 과정을 30년 이상 끌어갈 끈기도 필수적이다. 한국 과학자들도 남들이 몰라주는 한 분야를 30년 지속할 호기심과 끈기, 그리고 열정이 필요하다. 인공지능 강화학습에서 거꾸로 우리가 배운다.

강화학습 과정에 필요한 누적 보상을 표현하는 가치함수(Value Function) 수식 노트. [출처=KAIST]

 

김정호 카이스트 전기 및 전자공학과 교수 joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
[변상문의 화랑담배] 제2회 광복군 변상문의 '화랑담배'는 6·25전쟁 이야기이다. 6·25전쟁 때 희생된 모든 분에게 감사드리고, 그 위대한 희생을 기리기 위해 제목을 '화랑담배'로 정했다.  1940년 9월 17일 중국 중경 가릉호텔에서 성대한 행사가 열렸다. 대한민국 임시정부 광복군 창설식이었다. 미국 한인 동포들이 보내온 돈 4만원으로 조직한 군대였다. 지금 돈으로 환산하면 20억 원 정도 된다. 총사령관 이청천 장군, 참모장 이범석 장군, 제1지대장 이준식, 제2지대장 고운기, 제3지대장 김학규, 제5지대장에 나월환을 임명했다. 지대장은 지금의 사단장에 해당한다. 모두 봉오동 전투, 청산리 전투를 비롯하여 남북 만주에서 전개된 항일무장투쟁에 직접 참여하여 활동한 독립군 출신이었다. 한국광복군 훈련반 제1기 졸업사진. [사진= 독립기념관] 임시정부 주석 김구는 포고문을 통해 "국내외 동포들에게 알립니다. 1940년 9월 17일부로 대한민국 광복군을 창설하였습니다. 광복군은 1907년 8월 1일 일제가 대한제국 군대를 해산한 날이 바로 광복군 창설일임을 선언합니다. 광복군은 구 한국군의 후신으로 33년간에 걸친 의병과 독립군의 항일무장투쟁을 계승한 전통 무장 조직입니다"라고 했다. 대한제국 국군-의병-독립군의 군맥(軍脈)과 군혼(軍魂)을 분명하게 잇고 있음을 천명한 것이다. 부대 편성은 소대, 중대, 대대, 연대, 여단, 사단 6단으로 편성하였다. 총 3개 사단을 조직할 계획이었다. 그러나 인원이 적은 상황에서 우선 지대를 만들고, 각 지대를 구대와 분대로 연계한 전투부대를 구성했다. 임시정부에서 1940년 9월 19일 중국 국민당 정부에 통보한 '한국광복군 총사령부 직원 명단'에 의하면, 부대 규모가 총사령부와 4개 단위부대, 여기에다 조선혁명군 부대까지 포함하여 5000여 명이었다. 임시정부에서는 1941년 12월 연합국의 일원으로 일본에 선전포고했다. 1942년에는 미국 측에 "미국이 제주도를 해방 시켜 주면, 중경에 있는 임시정부를 제주도로 옮긴 후, 광복군이 미군과 함께 한반도 상륙작전을 전개하겠다."라고 제안하였다. 이 제안은 실제로 미국 OSS 부대(지금의 CIA)와 1945년 4월부터 8월까지 강도 높은 국내 진공 작전을 준비했다. 주요 훈련은 3개월 기간에 고공낙하, 암살법(권총에 특수장치를 하여 소리 없이 암살하는 방법), 통신(암호의 작성 및 해독법, 무전기 조작 및 수리), 교란 행동, 정보수집, 폭파 등 이었다. 일과는 07:00∼12:00 오전 훈련, 13:00∼18:00 오후 훈련, 19:00∼22:00 야간 훈련이었다. 주요 임무는 대한민국으로 낙하산과 잠수함으로 침투하여 미 공군 공습에 필요한 지형 등의 정보를 제공하고 일본군 군사시설 탐지 및 파괴 지하 유격대를 조직하여 연합군 상륙작전 시 제2선에서 연결하는 작전이었다. 마침내 1945년 8월 7일 모든 훈련을 마치고 국내진공작전 출정식을 개최했다. 개시일은 8월 10일이었다. 출정식 때 장준하 경기도 공작 반장은 "나는 조국광복을 위해 죽음을 선택했습니다. 내가 나의 죽음을 지불하면, 내 능력껏 그 대가가 조국을 위해서 결제될 것입니다. 나의 각오는 한 장의 정수표입니다. 발생인은 장준하, 결제인은 조국입니다"라는 유서까지 작성했다. / 변상문 국방국악문화진흥회 이사장 2025-09-08 08:00
사진
'포스트 이시바' 누구?...고이즈미·다카이치 선두 [서울=뉴스핌] 오영상 기자 = 이시바 시게루 일본 총리가 자민당 총재직 사임을 공식화하면서, 일본 정국의 관심은 차기 자민당 총재 선거로 쏠리고 있다. 집권당 총재가 곧 총리직을 맡는 일본 정치 구조상 이번 총재 선거는 사실상 다음 총리를 뽑는 절차다. 자민당은 조만간 새로운 총재 선거 일정을 확정할 예정이다. 이번 선거에서는 지난 2024년 9월 총재 선거에서 이시바 총리와 경합했던 주요 인사들이 다시 출마할 가능성이 높다. 고이즈미 신지로 농림수산상, 다카이치 사나에 전 경제안보담당상, 하야시 요시마사 관방장관, 모테기 도시미쓰 전 간사장, 고바야시 다카유키 전 경제안보담당상 등이 후보군으로 거론된다. 정국 운영이 소수 여당이라는 제약 속에서 이루어지는 만큼, 차기 총재가 야당과 어떻게 연대할지, 어떤 연립 구도를 짤지가 최대 쟁점으로 꼽힌다. '포스트 이시바' 후보로 꼽히고 있는 고이즈미 신지로 일본 농림수산상 [사진=로이터 뉴스핌] ◆ 고이즈미·다카이치 선두권 현재 여론조사에서는 고이즈미 농림수산상과 다카이치 전 경제안보상이 선두권을 형성하고 있다. 니혼게이자이신문 지난달 29~31일 실시한 여론조사에 따르면 차기 총리에 적합한 인물로 다카이치가 23%, 고이즈미가 22%를 기록했다. 나란히 1, 2위다. 자민당 지지층으로 한정하면 고이즈미가 32%로, 다카이치(17%)를 크게 앞서는 것으로 나타났다. 다카이치는 2024년 총재 선거에서 1차 투표에서 1위를 차지했으나 결선에서 이시바에게 역전패했다. 고이즈미 역시 의원 표에서 선두에 올랐지만 당원 표에서 밀리며 결선에 오르지 못했다. 두 사람 모두 당내 기반과 대중적 인지도를 겸비해 차기 선거에서도 가장 주목받는 주자들이다. 고이즈미 농림수산상은 1981년생(44세)으로 고이즈미 준이치로 전 총리의 차남이다. 2009년 중의원 첫 당선 이후 줄곧 '포스트 아베', '차세대 리더'로 주목받았다. 환경상, 농림수산상을 거쳤으며 개혁 성향과 젊은 이미지로 지지층을 넓혔다. 2024년 총선에서 당 선거대책위원장을 맡았으나 참패 책임을 지고 물러났다. 이후 농림수산상으로 복귀해 쌀 유통 개혁 등 농정 개혁에 매진했다. 대중적 인지도와 '고이즈미 브랜드'라는 정치 자산이 최대 강점으로 꼽힌다. 다카이치 전 경제안보상은 1961년생(64세)으로 보수 강경파로 분류되는 여성 정치인이다. 2021년 총재 선거에 첫 도전해 아베 신조 전 총리의 전폭적 지원을 받으며 3위를 기록했다. 2024년 총재 선거 1차 투표에서 최다 득표(의원 72표, 당원 109표)를 얻었으나 결선에서 이시바 총리에게 역전 당했다. 유일한 여성 후보로서 '보수의 아이콘' 이미지를 갖고 있으며, 아베 전 총리와 가까웠던 의원 그룹이 주된 지지 기반이다. 이시바 정권에서 당직 제안을 거절하며 독자 노선을 유지해 왔다. '포스트 이시바' 후보로 꼽히는 다카이치 사나에 전 일본 경제안보담당상 [사진=로이터 뉴스핌] ◆ 하야시·모테기 등 잠룡도 주목 고이즈미와 다카이치 두 선두 주자 외에 잠룡들의 행보도 주목된다. 하야시 요시마사 관방장관은 옛 기시다파 일부의 지지를 받고 있으며, 이시바 정권의 2인자로서 존재감을 키워왔다. 모테기 도시미쓰 전 간사장은 당내 경험과 풍부한 인맥을 강점으로 삼고, 아소 다로 전 부총리와 교류를 통해 지지 기반을 다지고 있다. 고바야시 다카유키 전 경제안보담당상은 5선 의원으로, 동기 의원들과 옛 니카이파의 지원을 받으며 출마 가능성을 열어두고 있다. ◆ 총재 선거 이후에도 정국 '안갯속' 자민당 총재 선거는 국회의원 표와 당원·당우 표를 합산하는 방식이 원칙이지만, 긴급 시에는 국회의원과 지방 지부 대표만 투표하는 '양원 의원 총회' 방식으로 대체될 수 있다. 이 경우 의원 표의 비중이 커져 파벌 역학이 중요해진다. 차기 총재가 선출되더라도 곧바로 정권 안정으로 이어진다는 보장은 없다. 일본 헌법상 총리는 국회에서 지명되는데, 자민·공명 양당은 현재 중의원과 참의원 모두에서 과반을 잃은 상태다. 따라서 야당이 단일 후보를 세워 결집할 경우, 자민당 총재가 총리로 지명되지 못할 가능성도 배제할 수 없다. 자민당 총재가 총리에 오르더라도, 예산안·세제 개혁 법안 등 국정 운영은 야당 협조 없이는 불가능하다. 이런 이유로 차기 총재는 곧바로 '연립 확대'나 '정책 연대'를 추진할 수밖에 없고, 총재 선거 과정에서도 어떤 야당과 손을 잡을지가 핵심 화두가 된다. 결국 이번 자민당 총재 선거는 단순히 차기 지도자를 뽑는 절차를 넘어, 일본 정치가 다당제 속에서 어떤 연립 구도를 구축할지 시험대가 되는 분기점으로 평가된다. goldendog@newspim.com 2025-09-08 09:26
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동